1,005,607 research outputs found

    On the Existence of Supersingular Curves of Given Genus

    Get PDF
    We give a method to construct explicitly a supersingular curve of given genus g in characteristic 2.Comment: 9 pages, plain TeX, UvA-report 94-1

    Quadratic forms, generalized Hamming weights of codes and curves with many points

    Full text link
    We use the relations between quadrics, trace codes and algebraic curves to construct algebraic curves over finite fields with many points and to compute generalized Hamming weights of codes.Comment: 14 pages, Plain Te

    Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations on deforming meshes

    Get PDF
    An overview is given of a space-time discontinuous Galerkin finite element method for the compressible Navier-Stokes equations. This method is well suited for problems with moving (free) boundaries which require the use of deforming elements. In addition, due to the local discretization, the space-time discontinuous Galerkin method is well suited for mesh adaptation and parallel computing. The algorithm is demonstrated with computations of the unsteady \ud ow field about a delta wing and a NACA0012 airfoil in rapid pitch up motion

    Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part I. General formulation

    Get PDF
    A new space-time discontinuous Galerkin finite element method for the solution of the Euler equations of gas dynamics in time-dependent flow domains is presented. The discontinuous Galerkin discretization results in an efficient element-wise conservative upwind finite element method, which is particularly well suited for local mesh refinement. The upwind scheme uses a formulation of the HLLC flux applicable to moving meshes and several formulations for the stabilization operator to ensure monotone solutions around discontinuities are investigated. The non-linear equations of the space-time discretization are solved using a multigrid accelerated pseudo-time integration technique with an optimized Runge-Kutta method. The linear stability of the pseudo-time integration method is investigated for the linear advection equation. The numerical scheme is demonstrated with simulations of the flow field in a shock tube, a channel with a bump, and an oscillating NACA 0012 airfoil. These simulations show that the accuracy of the numerical discretization is O(h5/2)O(h^{5/2}) in space for smooth subsonic flows, both on structured and locally refined meshes, and that the space-time adaptation can significantly improve the accuracy and efficiency of the numerical method. \u

    Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part II. Efficient flux quadrature

    Get PDF
    A new and efficient quadrature rule for the flux integrals arising in the space-time discontinuous Galerkin discretization of the Euler equations in a moving and deforming space-time domain is presented and analyzed. The quadrature rule is a factor three more efficient than the commonly applied quadrature rule and does not affect the local truncation error and stability of the numerical scheme. The local truncation error of the resulting numerical discretization is determined and is shown to be the same as when product Gauss quadrature rules are used. Details of the approximation of the dissipation in the numerical flux are presented, which render the scheme consistent and stable. The method is succesfully applied to the simulation of a three-dimensional, transonic flow over a deforming wing. \u

    Strategies to design for dynamic usability

    Get PDF
    Since usability is a property of the interaction between a product, a user and the task that he or she is trying to complete [6], a product’s usability can vary when it is used in varying use situations. We define this as dynamic usability. This study is aimed at exploring how practitioners currently deal with dynamic usability. From a retrospective case study research of three design projects different principles and strategies were formulated for dealing with dynamic use situations. In this paper we present solution principles that are applied to accommodate products to dynamic use situations and we discuss two design process issues with regard to dynamic usability, namely the information sources that are used to get insight in the use situations and the means by which designers try to get insight in the consequence of their design decisions with regard to future use situation
    corecore