15 research outputs found

    The role of renin-angiotensin-aldosterone system polymorphisms in phenotypic expression of MYBPC3-related hypertrophic cardiomyopathy

    Get PDF
    The phenotypic variability of hypertrophic cardiomyopathy (HCM) in patients with identical pathogenic mutations suggests additional modifiers. In view of the regulatory role in cardiac function, blood pressure, and electrolyte homeostasis, polymorphisms in the renin-angiotensin-aldosterone system (RAAS) are candidates for modifying phenotypic expression. In order to investigate whether RAAS polymorphisms modulate HCM phenotype, we selected a large cohort of carriers of one of the three functionally equivalent truncating mutations in the MYBPC3 gene. Family-based association analysis was performed to analyze the effects of five candidate RAAS polymorphisms (ACE, rs4646994; AGTR1, rs5186; CMA, rs1800875; AGT, rs699; CYP11B2, rs1799998) in 368 subjects carrying one of the three mutations in the MYBPC3 gene. Interventricular septum (IVS) thickness and Wigle score were assessed by 2D-echocardiography. SNPs in the RAAS system were analyzed separately and combined as a pro-left ventricular hypertrophy (LVH) score for effects on the HCM phenotype. Analyzing the five polymorphisms separately for effects on IVS thickness and Wigle score detected two modest associations. Carriers of the CC genotype in the AGT gene had less pronounced IVS thickness compared with CT and TT genotype carriers. The DD polymorphism in the ACE gene was associated with a high Wigle score (P = 0.01). No association was detected between the pro-LVH score and IVS thickness or Wigle score. In conclusion, in contrast to previous studies, in our large study population of HCM patients with functionally equivalent mutations in the MYBPC3 gene we did not find major effects of genetic variation within the genes of the RAAS system on phenotypic expression of HCM. European Journal of Human Genetics (2012) 20, 1071-1077; doi: 10.1038/ejhg.2012.48; published online 9 May 201

    A Complex Double Deletion in LMNA Underlies Progressive Cardiac Conduction Disease, Atrial Arrhythmias, and Sudden Death

    No full text
    Background-Cardiac conduction disease is a clinically and genetically heterogeneous disorder characterized by defects in electrical impulse generation and conduction and is associated with sudden cardiac death. Methods and Results-We studied a 4-generation family with autosomal dominant progressive cardiac conduction disease, including atrioventricular conduction block and sinus bradycardia, atrial arrhythmias, and sudden death. Genome-wide linkage analysis mapped the disease locus to chromosome 1p22-q21. Multiplex ligation-dependent probe amplification analysis of the LMNA gene, which encodes the nuclear-envelope protein lamin A/C, revealed a novel gene rearrangement involving a 24-bp inversion flanked by a 3.8-kb deletion upstream and a 7.8-kb deletion downstream. The presence of short inverted sequence homologies at the breakpoint junctions suggested a mutational event involving serial replication slippage in trans during DNA replication. Conclusions-We identified for the first time a complex LMNA gene rearrangement involving a double deletion in a 4-generation Dutch family with progressive conduction system disease. Our findings underscore the fact that if conventional polymerase chain reaction-based direct sequencing approaches for LMNA analysis are negative in suggestive pedigrees, mutation detection techniques capable of detecting gross genomic lesions involving deletions and insertions should be considered. (Circ Cardiovasc Genet. 2011;4:280-287.
    corecore