6 research outputs found

    Cross-Term-Free Time-Frequency Distribution Reconstruction via Lifted Projections

    Get PDF
    Cataloged from PDF version of article.A crucial aspect of time-frequency (TF) analysis is the identification of separate components in a multicomponent signal. The Wigner-Ville distribution is the classical tool for representing such signals, but it suffers from cross-terms. Other methods, which are members of Cohen's class of distributions, also aim to remove the cross-terms by masking the ambiguity function (AF), but they result in reduced resolution. Most practical time-varying signals are in the form of weighted trajectories on the TF plane, and many others are sparse in nature. Therefore, in recent studies the problem is cast as TF distribution reconstruction using a subset of AF domain coefficients and sparsity assumption. Sparsity can be achieved by constraining or minimizing the l(1) norm. In this article, an l(1) minimization approach based on projections onto convex sets is proposed to obtain a high-resolution, cross-term-free TF distribution for a given signal. The new method does not require any parameter adjustment to obtain a solution. Experimental results are presented

    AM/FM signal estimation with micro-segmentation and polynomial fit

    Get PDF
    Cataloged from PDF version of article.Amplitude and phase estimation of AM/FM signals with parametric polynomial representation require the polynomial orders for phase and amplitude to be known. But in reality, they are not known and have to be estimated. A well-known method for estimation is the higher-order ambiguity function (HAF) or its variants. But the HAF method has several reported drawbacks such as error propagation and slowly varying or even constant amplitude assumption. Especially for the long duration time-varying signals like AM/FM signals, which require high orders for the phase and amplitude, computational load is very heavy due to nonlinear optimization involving many variables. This paper utilizes a micro-segmentation approach where the length of segment is selected such that the amplitude and instantaneous frequency (IF) is constant over the segment. With this selection first, the amplitude and phase estimates for each micro-segment are obtained optimally in the LS sense, and then, these estimates are concatenated to obtain the overall amplitude and phase estimates. The initial estimates are not optimal but sufficiently close to the optimal solution for subsequent processing. Therefore, by using the initial estimates, the overall polynomial orders for the amplitude and phase are estimated. Using estimated orders, the initial amplitude and phase functions are fitted to the polynomials to obtain the final signal. The method does not use any multivariable nonlinear optimization and is efficient in the sense that the MSE performance is close enough to the Cramer–Rao bound. Simulation examples are presented

    Phase retrieval of sparse signals from Fourier Transform magnitude using non-negative matrix factorization

    Get PDF
    Signal and image reconstruction from Fourier Transform magnitude is a difficult inverse problem. Fourier transform magnitude can be measured in many practical applications, but the phase may not be measured. Since the autocorrelation of an image or a signal can be expressed as convolution of x(n) with x(-n), it is possible to formulate the inverse problem as a non-negative matrix factorization problem. In this paper, we propose a new algorithm based on the sparse non-negative matrix factorization (NNMF) to estimate the phase of a signal or an image in an iterative manner. Experimental reconstruction results are presented. © 2013 IEEE

    Kernel estimation for Time-frequency distribution

    No full text
    In this article a method is introduced to obtain a high-resolution and cross term free Cohen's Class Time-frequency (TF) distribution based on kernel estimation. The kernel is estimated via projecting an initial rough TF distribution onto the epigraph set of l1 norm. The kernel is aligned with the signal alignment in ambiguity domain and filters out the cross terms. © 2015 IEEE

    A Complexity-Reduced ML Parametric Signal Reconstruction Method

    Get PDF
    Cataloged from PDF version of article.The problem of component estimation from a multicomponent signal in additive white Gaussian noise is considered. A parametric ML approach, where all components are represented as a multiplication of a polynomial amplitude and polynomial phase term, is used. The formulated optimization problem is solved via nonlinear iterative techniques and the amplitude and phase parameters for all components are reconstructed. The initial amplitude and the phase parameters are obtained via time-frequency techniques. An alternative method, which iterates amplitude and phase parameters separately, is proposed. The proposed method reduces the computational complexity and convergence time significantly. Furthermore, by using the proposed method together with Expectation Maximization (EM) approach, better reconstruction error level is obtained at low SNR. Though the proposed method reduces the computations significantly, it does not guarantee global optimum. As is known, these types of non-linear optimization algorithms converge to local minimum and do not guarantee global optimum. The global optimum is initialization dependent. © 2011 Z. Deprem et a
    corecore