58 research outputs found

    Composite cavity for enhanced efficiency of up conversion.

    Get PDF
    Methods, apparatus and systems for an up-converter resonant cavity light emitting diode device includes a semiconductor light source, an up-converter to form the light emitter with up-converting materials and an electrical source coupled with the semiconductor light source for providing electrical energy to the semiconductor light source to provide a desired wavelength emitted light. The semiconductor light source is a resonant cavity light emitting diode or laser that emits an approximately 975 nm wavelength to provide electrical and optical confinement to the semiconductor light source to fonn a resonant cavity up-converting light emitting diode (UCIRCLED). Rows and columns of electrodes provide active matrix addressing of plural sets of UC/RCLEDs for display devices. The up-converter resonant cavity light emitting diode device has applications in head mounted projection display optical system using spectrally selective beam splitters to eliminate spectral overlap between colors a

    Emissive Fibers Containing Up Converters Excited by GaAs Based Semiconductor Light Sources

    Get PDF
    Methods and systems for an emissive fiber capable of being used for making emissive fabric by providing an optical fiber having a core and and embedding up conversion particles into at least one of the cladding and core to produce an emissive fiber that emits visible light when excited by light from near infrared light source that excites the up conversion particles. The optical fiber can have a core index of refraction that is greater than or less than the refractive index of the cladding for near infrared light or an index difference between the core and cladding of zero. Plural optical fibers are intertwined to produce an emissive fabric, wherein coupling a light source with the emissive fibers transmits a light beam through the fiber to excite the up conversion particles to emit visible light. The up conversion material can be embedded into the core, the cladding, or both

    Composite cavity for enhanced efficiency of up conversion.

    Get PDF
    Methods, apparatus and systems for an up-converter resonant cavity light emitting diode device includes a semiconductor light source, an up-converter to form the light emitter with up-converting materials and an electrical source coupled with the semiconductor light source for providing electrical energy to the semiconductor light source to provide a desired wavelength emitted light. The semiconductor light source is a resonant cavity light emitting diode or laser that emits an approximately 975 nm wavelength to provide electrical and optical confinement to the semiconductor light source to fonn a resonant cavity up-converting light emitting diode (UCIRCLED). Rows and columns of electrodes provide active matrix addressing of plural sets of UC/RCLEDs for display devices. The up-converter resonant cavity light emitting diode device has applications in head mounted projection display optical system using spectrally selective beam splitters to eliminate spectral overlap between colors a

    Low voltage display or indicator systems employing combinations of up converters and semiconductor light sources.

    Get PDF
    Methods and systems for a combination of up converters and semiconductor light sources in low voltage display or indicator system that can be battery powered. The display or indicator system includes one or more spatial light modulators and one or more up converters in combination with one or more semiconductor light sources. The spatial light modulator can be a liquid crystal display or a micro electro mechanical system or other spatial light modulator and can use direct modulation of the semiconductor light sources to modulate the visible emission from the up converters. The spatial light modulator can be placed between the up converting light source and the viewer or behind the up converting light source depending on the type of spatial light modulator, or modulation may be applied directly to one or more semiconductor light sources or arrays of semiconductor light sources that excite the up converters

    Semiconductor Light Sources Including Selective Diffusion for Optical and Electrical Confinement

    Get PDF
    The invention includes material structures that produce optical and electrical confinement in semiconductor laser diodes. The material structures can produce a low operating voltage and polarization control for use of the laser diodes to improve sensor performance for position sensors, gas sensors, atomic clocks, and bio-sensors. The invention may also have application to laser diodes for optical interconnects and high power laser diode pumps, and those application requiring laser diode arrays

    Combination of up-converting materials with semiconductor light sources

    Get PDF
    Methods, apparatus and systems for an up-converter resonant cavity light emitting diode device includes a semiconductor light source, an up-converter to form the light emitter with up-converting materials and an electrical source coupled with the semiconductor light source for providing electrical energy to the semiconductor light source to provide a desired wavelength emitted light. The semiconductor light source is a resonant cavity light emitting diode or laser that emits an approximately 975 nm wavelength to provide electrical and optical confinement to the semiconductor light source to form an up-converting resonant cavity light emitting diode (UCIRCLED). Rows and columns of electrodes provide active matrix addressing of plural sets of UCIRCLEDs for display devices. The up-converter resonant cavity light emitting diode device has applications in head mounted projection display optical system using spectrally selective beam splitters to eliminate spectral overlap between colors a

    High quality two-dimensional photonic crystal slab cavities

    Get PDF
    We have fabricated and characterized donor-mode nanocavities formed by a single defect cavity defined within a two-dimensional photonic crystal slab. Quantum dots emitting in the 1.1-1.3 micron range were used as luminescence sources, and a design using fractional edge dislocations was used to demonstrate well-confined dipole modes with high quality factors. By applying the fractional dislocation geometry, the measured quality factor could be increased to values as high as 2800. This compares with typical quality factors of around 1500 measured from more conventional shallow donor mode cavities with larger mode volumes

    Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters

    Get PDF
    We have characterized the modes within two-dimensional photonic crystal nanocavities with self-organized indium arsenide quantum dots as an active material. Highly localized donor mode resonances with 3 to 5 nm linewidth were observed when spatially selective optical pumping the cavities. These modes could be lithographically tuned from 1100 to 1300 nm. Other, more extended modes, were also characterized and exhibited narrower resonance linewidths ranging from 0.6 to 2 nm

    Confined modes of two dimensional photonic crystal defect cavities with Indium Arsenide quantum dots

    Get PDF
    We have fabricated and characterized two-dimensional photonic crystal with defect cavities containing self-organized indium arsenide quantum dots as active material. Single defect donor modes were found to have well localized close to the single defect
    corecore