37 research outputs found
Distinguishing Ewing sarcoma and osteomyelitis using FTIR spectroscopy
Abstract The differential diagnosis of Ewing sarcoma and osteomyelitis can be challenging and can lead to delays in treatment with possibly devastating results. In this retrospective, small-cohort study we demonstrate, that the Fourier Transformed Infrared (FTIR) spectra of osteomyelitis bone tissue can be differentiated from Ewing sarcoma and normal bone tissue sampled outside tumour area. Significant differences in osteomyelitis samples can be seen in lipid and protein composition. Supervised learning using a quadratic discriminant analysis classifier was able to differentiate the osteomyelitis samples with high accuracy. FTIR spectroscopy, alongside routine radiological and histopathological methods, may offer an additional tool for the differential diagnosis of osteomyelitis and ES
The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies
Torrefaction is the process of drying biomass at high temperatures in order to transform it into biofuels with properties and composition resembling carbon. The impact of high temperature breaks the chains of hemicellulose, lignin and cellulose and degrades the biomass to simpler organic compounds. The aim of this publication was to specify the impact of the duration of the heat treatment on the stability of biomass structures such as lignocellulose illustrated with examples of selected species of conifers. The research material consisted of shoot tips of Junniperus sabina and Picea abies. The material used in the process was air-dried, dried at 150oC and torrefied at temperatures of 200, 250 and 300oC in a LECO camera – TGA 701 apparatus for 30 minutes. Fresh needles and their torrefied products were measured spectroscopically using FTIR Vertex 70v made by Bruker. Microscopic photographs of samples were taken in the scales 10 μm, 20 μm, and 50 μm using the TESCAN VEGA3 scanning electron microscope. The unprocessed plant material did not differ significantly from one another – the FTIR spectra of both plants exhibited the same functional groups. The biomass heat treatment led to significant changes in its chemical composition and topographic changes in the obtained biochars
Synthesis and characterization of new functionalized polymer-Fe3O4 nanocomposite particles
In this study, Fe3O4 nanoparticles (NPs) were functionalized with copolymer or terpolymer bearing glycidyl methacrylate (GMA) moieties making them suitable for potential applications as drug delivery systems (DDS). For this purpose, the surface of magnetic nanoparticles was first coated with 3-(trimethoxysilyl) propyl methacrylate (MPS) by a silanization reaction to introduce reactive methacrylate groups onto the surface. Subsequently, monomers were grafted onto the surface of modified-MPS particles via two polymerization methods: seed emulsion (GMA, divinylbenzene, DVB, and styrene, S) and distillation – precipitation (GMA and DVB). The obtained nanocomposite particles were characterized by FTIR (Fourier transform infrared spectroscopy), DR UV-Vis (diffuse reflectance ultraviolet – visible spectroscopy), TEM (transmission electron microscopy) combined with EDS (energy dispersive X-ray spectroscopy) analysis and DLS (dynamic light scattering). FTIR spectroscopy showed that indeed a polymer – Fe3O4@MPS composite was obtained. TEM and EDS analysis showed that the seed emulsion method resulted in nanosized, 100 nm Fe3O4@MPS core/polymer shell NPs, forming long chains. On the contrary, the distillation – precipitation method caused the formation of an inverted structure, i.e. polymer core coated by a Fe3O4@MPS shell, which exhibited a very coarse size distribution varying from several hundreds to over 2 µm
Predicting Ewing Sarcoma Treatment Outcome Using Infrared Spectroscopy and Machine Learning
Background: Improved outcome prediction is vital for the delivery of risk-adjusted, appropriate and effective care to paediatric patients with Ewing sarcoma—the second most common paediatric malignant bone tumour. Fourier transform infrared (FTIR) spectroscopy of tissues allows the bulk biochemical content of a biological sample to be probed and makes possible the study and diagnosis of disease. Methods: In this retrospective study, FTIR spectra of sections of biopsy-obtained bone tissue were recorded. Twenty-seven patients (between 5 and 20 years of age) with newly diagnosed Ewing sarcoma of bone were included in this study. The prognostic value of FTIR spectra obtained from Ewing sarcoma (ES) tumours before and after neoadjuvant chemotherapy were analysed in combination with various data-reduction and machine learning approaches. Results: Random forest and linear discriminant analysis supervised learning models were able to correctly predict patient mortality in 92% of cases using leave-one-out cross-validation. The best performing model for predicting patient relapse was a linear Support Vector Machine trained on the observed spectral changes as a result of chemotherapy treatment, which achieved 92% accuracy. Conclusion: FTIR spectra of tumour biopsy samples may predict treatment outcome in paediatric Ewing sarcoma patients with greater than 92% accuracy