29 research outputs found

    Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy

    Get PDF
    Many important molecular events associated with implantation and development occur within the female reproductive tract, especially within the uterus endometrium, during pregnancy periods. The endometrium includes the mucosal lining of the uterus, which provides a suitable site for implantation and development of a fertilized egg and fetus. To date, the molecular cascades in the uterus endometrium during pregnancy periods in pigs have not been elucidated fully. In this study, we compared the functional regulated proteins in the endometrium during pregnancy periods with those in non-pregnant conditions and investigated changes in expression patterns during pregnancy (days 40, 70, and 93) using two-dimensional gel electrophoresis (2-DE) and western blotting. The functional regulated proteins were identified and discovered from differentially expressed proteins in the uterus endometrium during pregnancy. We discovered 820 protein spots in a proteomic analysis of uterus endometrium tissues with 2-DE gels. We identified 63 of the 98 proteins regulated differentially among non-pregnant and pregnant tissues (matched and unmatched spots). Interestingly, 10 of these 63 proteins are development-, cytoskeleton- and chaperon-related proteins such as transferrin, protein DJ-1, transgelin, galectin-1, septin 2, stathmin 1, cofilin 1, fascin 1, heat shock protein (HSP) 90β and HSP 27. The specific expression patterns of these proteins in the endometrium during pregnancy were confirmed by western blotting. Our results suggest that the expressions of these genes involved in endometrium function and endometrium development from early to late gestation are associated with the regulation of endometrium development for maintaining pregnancy

    Peroxiredoxin 1 Controls Ovulation and Ovulated Cumulus–Oocyte Complex Activity through TLR4-Derived ERK1/2 Signaling in Mice

    No full text
    Peroxiredoxins (PRDXs) are expressed in the ovary and during ovulation. PRDX1 activity related to the immuno-like response during ovulation is unknown. We investigated the roles of Prdx1 on TLR4 and ERK1/2 signaling from the ovulated cumulus–oocyte complex (COC) using Prdx1-knockout (K/O) and wild-type (WT) mice. Ovulated COCs were collected 12 and 16 h after pregnant mare serum gonadotropin/hCG injection. PRDX1 protein expression and COC secretion factors (Il-6, Tnfaip6, and Ptgs2) increased 16 h after ovulated COCs of the WT mice were obtained. We treated the ovulated COCs in mice with LPS (0.5 μg/mL) or hyaluronidase (Hya) (10 units/mL) to induce TLR4 activity. Intracellular reactive oxygen species (ROS), cumulus cell apoptosis, PRDX1, TLR4/P38/ERK1/2 protein expression, and COC secretion factors’ mRNA levels increased in LPS- and Hya-treated COCs. The ERK inhibitor (U0126) and Prdx1 siRNA affected TLR4/ERK1/2 expression. The number and cumulus expansion of ovulated COCs by ROS were impaired in Prdx1 K/O mice but not in WT ones. Prdx1 gene deletion induced TLR4/P38/ERK1/2 expression and cumulus expansion genes. These results show the controlling roles of PRDX1 for TLR4/P38/ERK1/2 signaling activity in ovulated mice and the interlink of COCs with ovulation

    The antioxidant capacity of Mito-TEMPO improves the preimplantation development and viability of vitrified-warmed blastocysts through the stabilization of F-actin morphological aspects in bovine embryos

    No full text
    Reactive oxygen species (ROS) production and F-actin cytoskeleton dynamics play important roles in the survival rate of blastocysts after the vitrifiedwarming process. However, the protective effects of Mito-TEMPO against cryo-injury and viability through F-actin aggregation and mitochondrial-specific ROS production in vitrificated-warmed bovine embryos have not been investigated. The aims of the present study were to: (1) determine the effects of Mito-TEMPO on embryonic developmental competence and quality by F-actin stabilization during in vitro culturing (IVC), and (2) confirm the effects of Mito-TEMPO through F-actin structure on the cryotolerance of vitrification-warming in Mito-TEMPO exposed in vitro production (IVP) of bovine blastocysts. Bovine zygotes were cultured with 0.1 μM Mito-TEMPO treatment for 2 days of IVC. Mito-TEMPO (0.1 μM) exposed bovine embryos slightly improved in blastocyst developmental rates compared to the non-treated group. Moreover, the viability of vitrified-warmed blastocysts from Mito-TEMPO treated embryos significantly increased (p < 0.05, non-treated group: 66.7 ± 3.2% vs Mito-TEMPO treated group: 79.2 ± 5.9%; re-expanded at 24 hours). Mito-TEMPO exposed embryos strengthened the F-actin structure and arrangement in the blastocyst after vitrification-warming. Furthermore, the addition of Mito-TEMPO into the IVC medium enhanced embryonic survival and quality through F-actin stabilization after the vitrification-warming procedure. Overall, our results suggest that supplementing the culture with 0.1 μM Mito- TEMPO improves the embryonic quality and cryo-survival of IVP bovine blastocysts

    Ochratoxin A triggers endoplasmic reticulum stress through PERK/NRF2 signaling and DNA damage during early embryonic developmental competence in pigs

    No full text
    Ochratoxin A (OTA), a mycotoxin found in foods, has a deleterious effect on female reproduction owing to its endocrine-disrupting activity mediated through endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the mechanisms of OTA-induced ER stress in pig embryos during in vitro culture (IVC) are not yet fully understood. In the present study, porcine embryos were cultured for two days in an IVC medium supplemented with 0.5, 1.0, and 5.0 μM OTA, which led to an OTA-induced reduction in the developmental rate of blastocysts. The mRNA-seq transcriptome analysis revealed that the reduced blastocyst development ability of OTA-exposed porcine embryos was caused by ER stress, ultimately resulting in the accumulation of ROS and the occurrence of apoptosis. The expression levels of some UPR/PERK signaling-related genes (DDIT3, EIF2AK3, EIF2S1, NFE2L2, ATF4, EIF2A, and KEAP1) were found to differ in OTA-exposed pig embryos. OTA induces DNA damage by triggering an increase in RAD51/γ-H2AX levels and suppressing p-NRF2 activity. This effect is mediated through intracellular ROS and superoxide accumulation in the nuclei of porcine embryos. The cytotoxicity of OTA increased the activation of the PERK signal pathways (p-PERK, PERK, p-eIF2α, eIF2α, ATF4, and CHOP) in porcine embryos, with abnormal distribution of the ER observed around the nucleus. Collectively, our findings indicate that ER stress is a major cause of decline in the development of porcine embryos exposed to OTA. Therefore, OTA exposure induces ER stress and DNA damage via oxidative stress by disrupting PERK/NRF2 signaling activity in the developmental competence of porcine embryos during IVC

    Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos

    No full text
    Cloning by nuclear transfer (NT) has been riddled with difficulties: most clones die before birth and survivors frequently display growth abnormalities. The cross-species similarity in abnormalities observed in cloned fetuses/animals leads us to suspect the fidelity of epigenetic reprogramming of the donor genome. Here, we found that single-copy sequences, unlike satellite sequences, are demethylated in pre-implantation NT embryos. The differential demethylation pattern between genomic sequences was confirmed by analyzing single blastocysts. It suggests selective demethylation of other developmentally important genes in NT embryos. We also observed a reverse relationship between methylation levels and inner cell mass versus trophectoderm (ICM/TE) ratios, which was found to be a result of another type of differential demethylation occurring in NT blastocysts where unequal methylation was maintained between ICM and TE regions. TE-localized methylation aberrancy suggests a widespread gene dysregulation in an extra-embryonic region, thereby resulting in placental dysfunction familiar to cloned fetuses/animals. These differential demethylations among genomic sequences and between differently allocated cells produce varied overall, but specified, methylation patterns, demonstrating that epigenetic reprogramming occurs in a limited fashion in NT embryos

    Transcriptional profiling of the developmentally important signalling pathways in human embryonic stem cells

    No full text
    BACKGROUND: Embryonic stem cells (ESC) maintain their 'stemness' by self-renewal. However, the molecular mechanisms underlying self-renewal of human embryonic stem cells (hESC) remain to be elucidated. In this study, expression profiles of the molecules of developmentally important signalling pathways were investigated to better understand the relationships of the signalling pathways for self-renewal in hESC. METHODS: Two human ESC lines were cultured on mouse embryonic fibroblast (MEF) feeder cells. Gene expression was analysed by RT-PCR, real-time RT-PCR and Western blotting. RESULTS: In the bone morphogenetic protein (BMP4), transforming growth factor (TGF-beta) and fibroblast growth factor (FGF4) signalling pathways, ligands and antagonists were highly expressed in hESC compared with human embryoid body (hEB). Human ESC showed abundant transcripts of intracellular molecules in the Wnt, Hh and Notch signalling pathways. No difference was detected in the expression level of the JAK/STAT signalling molecules between hESC and hEB. Western blot analysis showed that the transcriptional levels of the signalling molecules in hESC were consistent with translational levels. From the real-time PCR analysis, expression levels of some genes, such as Oct3/4, Nodal and beta-catenin, were different between two hESC lines. CONCLUSION: The self-renewal of hESC is probably maintained by coordinated regulation of signalling-specific molecules and in a signalling-specific manner

    Melatonin Improves Oocyte Maturation and Mitochondrial Functions by Reducing Bisphenol A-Derived Superoxide in Porcine Oocytes In Vitro

    No full text
    Bisphenol A (BPA) is synthetic organic compound that exhibits estrogen-like properties and it induces mitochondrial superoxide production. Melatonin (Mela) protects against BPA-mediated cell damage and apoptosis. However, the antioxidative effects of Mela against BPA-induced superoxide production in porcine oocytes are still not known. In this study, we investigated the antioxidative effects of Mela against BPA-derived superoxide on oocyte maturation in pigs. To investigate the effects of the superoxide specific scavenger, Mito-TEMPO, on porcine oocyte maturation in response to BPA exposure apoptosis proteins, we treated the oocytes with Mito-TEMPO (0.1 &#181;M) after pre-treating them with BPA (75 &#181;M) for 22 h. As expected, the reduction in meiotic maturation and cumulus cell expansion of cumulus-oocyte-complexes (COCs) in the BPA (75 &#181;M) treated group was recovered (p &lt; 0.01) by treatment with Mito-TEMPO (0.1 &#181;M). An increase in the levels of mitochondrial apoptotic proteins (AIF, cleaved Cas 3 and cleaved Parp1) in response to BPA-induced damage was also reduced by Mito-TEMPO treatment in porcine COCs. Interestingly, we confirmed the positive effects of Mela with respect to superoxide production upon BPA exposure during oocyte maturation and also confirmed the reduction in mitochondrial apoptosis in Mela (0.1 &#181;M)-treated porcine COCs. These results provide evidence for the first time that antioxidative effects of Mela on BPA-derived superoxide improve porcine oocyte maturation
    corecore