3 research outputs found

    Biowastes as a Potential Energy Source in Africa

    Get PDF
    High population and industrialization have brought the need for a reliable and sustainable source of energy and protection of the environment. Although Africa has a low energy consumption capacity (3.4% of the global share in 2019), its high population growth rate and industrialization predict high energy demand in the future. Reliable and available energy resources are required to protect the environment and create energy dependency. Despite Africa’s low energy consumption capacity (3.4% of global consumption in 2019), its rapid population growth rate and industrialization indicate future significant energy demand. The current high production of biowastes with high energy content and their low utilization provides an opportunity for energy dependency, crop value addition, creation of jobs, and protection of the environment. The chapter has identified that the African population of 1.203 billion in 2017 consumed 928 Mtoe of energy and this demand is expected to increase in years to come. The energy mix has been identified to depend on fossil fuels with little consideration of biowastes. The biowaste is reported to contain 20.1 TWh in 2025. Biowaste is currently underutilized, and there are few conversion methods available. Government and non-government investments have been reported to be making efforts to improve bioenergy and biowaste usage. The prevailing challenges have been low proven technologies, poor energy policy, low population knowledge, and poor investments. Biowastes use can be increased when environmental laws and legislation are tightened, energy policy strengthened and enforced, cheap and appropriate technologies are introduced, and the population Education is provided. It is expected that when biowastes are well utilized, energy will be available even in disadvantaged (remote) areas at an affordable price for the developing continent of Africa

    A Review of Intermediate Pyrolysis as a Technology of Biomass Conversion for Coproduction of Biooil and Adsorption Biochar

    No full text
    The agenda to utilize and efficiently convert biomass has been raised to alleviate environmental problems and pressure on the reliance on fossil fuel. Intermediate pyrolysis has the ability to treat different biomasses and coproduction of biooil and adsorption biochar. This review article aims to evaluate the appropriateness of intermediate pyrolysis for the coproduction of biooil and adsorption biochar. It was observed that coproduced biooil is of high quality, stable, and miscible that can be used directly to existing engines or be easily blended. The biochar coproduced is good for adsorption but is not stable for microbial attack and hence unsuitable in soil treatment but for hydrometallurgy. Since the process is capable of treating waste biomass, it is an opportunity for further investigations in areas where wastes are plenty and less utilized. To increase the effectiveness of this technology for coproduction, optimizing parameters, design of efficient reactors, and use of catalyst must be worked upon

    Experimental Investigation of Thermal Characteristics of Kiwira Coal Waste with Rice Husk Blends for Gasification

    No full text
    Eminent depletion of fossil fuels and environmental pollution are the key forces driving the implementation cofiring of fossil fuels and biomass. Cogasification as a technology is known to have advantages of low cost, high energy recovery, and environmental friendliness. The performance/efficiency of this energy recovery process substantially depends on thermal properties of the fuel. This paper presents experimental study of thermal behavior of Kiwira coal waste/rice husks blends. Compositions of 0, 20, 40, 60, 80, and 100% weight percentage rice husk were studied using thermogravimetric analyzer at the heating rate of 10 K/min to 1273 K. Specifically, degradation rate, conversion rate, and kinetic parameters have been studied. Thermal stability of coal waste was found to be higher than that of rice husks. In addition, thermal stability of coal waste/rice husk blend was found to decrease with an increase of rice husks. In contrast, both the degradation and devolatilization rates increased with the amount of rice husk. On the other hand, the activation energy dramatically reduced from 131 kJ/mol at 0% rice husks to 75 kJ/mol at 100% rice husks. The reduction of activation energy is advantageous as it can be used to design efficient performance and cost effective cogasification process
    corecore