24 research outputs found

    Study of 207Tl126 produced in deep-inelastic reactions

    Get PDF
    Deep-inelastic collisions of a 208Pb beam on a 208Pb target were performed using the ATLAS accelerator at Argonne National Laboratory. The Gammasphere detector array was used for the detection of prompt and delayed gamma-rays of the reaction products.207Tl is one proton away from the 208Pb doubly-magic nucleus. Its low-energy level structure is dominated by the single proton-hole states πs1/2-1, πd3/2-1 and πh11/2-1. The 11/2- state is isomeric with T1/2 = 1.33(11) s. The reaction partner of 207Tl is 209Bi, which has arelatively well established level scheme compared to 207Tl. Cross-coincidences between these two nuclei were used to confirm or establish levels above the 11/2- isomeric state in 207Tl. These states are obtained via breaking of the neutron core. Angular correlation analysis was performed on known transitions in 208Pb, proving the applicability of this method for multipolarity assignment

    Metastable states from multinucleon excitations in Tl 202 and Pb 203

    Get PDF
    The excited level structures of Tl202 and Pb203, above the 7+ and 29/2- isomers, respectively, have been studied. An isomer with Iπ=20+ and T1/2=215(10)μs has been established in Tl202, and the level scheme extended from I=10 to 20ℏ with the placement of fifteen new transitions. In Pb203, the Iπ=37/2+ state is established to be metastable, with T1/2=2.5(3)ns. Levels in both nuclei arise from intrinsic excitations, with likely particle-hole character for the higher-lying states in Pb203. The 20+ isomer in Tl202 is most likely associated with a πh11/2-1 - ν(i13/2-2,f5/2-1) configuration, while the 37/2+ state in Pb203 results from the excitation of five neutrons. Calculations, using both an empirical approach and the oxbash code, have been performed to aid in the description of the excited level structure

    Structure of 207Pb populated in 208Pb + 208Pb deep-inelastic collisions

    Get PDF
    The yrast structure of 207Pb above the 13=2+ isomeric state has been investigated in deep-inelastic collisions of 208Pb and 208Pb at ATLAS, Argonne National Laboratory. New and previously observed transitions were measured using the Gammasphere detector array. The level scheme of 207Pb is presented up to ∼ 6 MeV, built using coincidence and γ-ray intensity analyses. Spin and parity assignments of states were made, based on angular distributions and comparisons to shell model calculations

    Angular distributions of rays from 210bi produced in 208 pb+208pb deep-inelastic reactions

    Get PDF
    The high-spin yrast structure of the 210Bi nucleus was investigated using -ray coincidence spectroscopy following deep-inelastic reactions in the 208Pb+208Pb system. Cascades of rays following the decay of a new isomer were identified. Spin-parity assignments to the states known from previous studies as well as to newly located excitations were made based on the measured angular distributions of rays combined with a transition conversion coefficient analysis

    Core excitations across the neutron shell gap in 207Tl

    Get PDF
    The single closed-neutron-shell, one proton-hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states

    N=151Pu, Cm and Cf nuclei under rotational stress: Role of higher-order deformations

    Get PDF
    Fast-rotating N=151 isotones 245Pu, 247Cm and 249Cf have been studied through inelastic excitation and transfer reactions with radioactive targets. While all have a ground-state band built on a νj15/2[734]9/2- Nilsson configuration, new excited bands have also been observed in each isotone. These odd-N excited bands allow a comparison of the alignment behavior for two different configurations, where the νj15/2 alignment is either blocked or allowed. The effect of higher order deformations is explored through cranking calculations, which help clarify the elusive nature of νj15/2 alignments

    γ -soft Ba 146 and the role of nonaxial shapes at N≈90

    Get PDF
    Low-spin states in the neutron-rich, N=90 nuclide Ba146 were populated following β decay of Cs146, with the goal of clarifying the development of deformation in barium isotopes through delineation of their nonyrast structures. Fission fragments of Cs146 were extracted from a 1.7-Ci Cf252 source and mass selected using the CAlifornium Rare Ion Breeder Upgrade (CARIBU) facility. Low-energy ions were deposited at the center of a box of thin β detectors, surrounded by a highly efficient high-purity Ge array. The new Ba146 decay scheme now contains 31 excited levels extending up to ∼2.5 MeV excitation energy, double what was previously known. These data are compared to predictions from the interacting boson approximation (IBA) model. It appears that the abrupt shape change found at N=90 in Sm and Gd is much more gradual in Ba and Ce, due to an enhanced role of the γ degree of freedom
    corecore