108 research outputs found

    Pathway of oxfendazole from the host into the worm:<i>Trichuris suis</i> in pigs

    Get PDF
    It is well known that the efficacy of a single oral dose of benzimidazoles against Trichuris spp. infections in humans and animals is poor, but is currently still used in control programmes against human trichuriasis. However, the route of the benzimidazoles from the treated host to Trichuris remains unknown. As parts of adult Trichuris are situated intracellularly in the caecum, they might be exposed to anthelmintic drugs in the intestinal content as well as the mucosa. In this study, the pathway of oxfendazole and its metabolites was explored using a T. suis-pig infection model, by simultaneously measuring drug concentrations within the worms and the caecal mucosa, caecal tissue, caecal content and plasma of pigs over time after a single oral dose of 5 mg/kg oxfendazole. Additionally, for comparison to the in vivo study, drug uptake and metabolism of oxfendazole by T. suis was examined after in vitro incubation. Oxfendazole and metabolites were quantified by High Performance Liquid Chromatography.Multivariate linear regression analysis showed a strong and highly significant association between OFZ concentrations within T. suis and in plasma, along with a weaker association between OFZ concentrations in caecal tissue/mucosa and T. suis, suggesting that oxfendazole reaches T. suis after absorption from the gastrointestinal tract and enters the worms by the blood-enterocyte pathway. The fenbendazole sulfone level in T. suis was highly affected by the concentrations in plasma. In addition, correlations between drug concentrations in the host compartments, were generally highest for this metabolite. In comparison to oxfendazole, the correlation between plasma and content was particularly high for this metabolite, suggesting a high level of drug movement between these compartments and the possible involvement of the enterohepatic circulation. Keywords: Trichuris, Benzimidazole, Drug efficacy, Drug pathwa

    World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guideline for diagnosing anthelmintic resistance using the faecal egg count reduction test in ruminants, horses and swine

    Full text link
    The faecal egg count reduction test (FECRT) remains the method of choice for establishing the efficacy of anthelmintic compounds in the field, including the diagnosis of anthelmintic resistance. We present a guideline for improving the standardization and performance of the FECRT that has four sections. In the first section, we address the major issues relevant to experimental design, choice of faecal egg count (FEC) method, statistical analysis, and interpretation of the FECRT results. In the second section, we make a series of general recommendations that are applicable across all animals addressed in this guideline. In the third section, we provide separate guidance details for cattle, small ruminants (sheep and goats), horses and pigs to address the issues that are specific to the different animal types. Finally, we provide overviews of the specific details required to conduct an FECRT for each of the different host species. To address the issues of statistical power vs. practicality, we also provide two separate options for each animal species; (i) a version designed to detect small changes in efficacy that is intended for use in scientific studies, and (ii) a less resource-intensive version intended for routine use by veterinarians and livestock owners to detect larger changes in efficacy. Compared to the previous FECRT recommendations, four important differences are noted. First, it is now generally recommended to perform the FECRT based on pre- and post-treatment FEC of the same animals (paired study design), rather than on post-treatment FEC of both treated and untreated (control) animals (unpaired study design). Second, instead of requiring a minimum mean FEC (expressed in eggs per gram (EPG)) of the group to be tested, the new requirement is for a minimum total number of eggs to be counted under the microscope (cumulative number of eggs counted before the application of a conversion factor). Third, we provide flexibility in the required size of the treatment group by presenting three separate options that depend on the (expected) number of eggs counted. Finally, these guidelines address all major livestock species, and the thresholds for defining reduced efficacy are adapted and aligned to host species, anthelmintic drug and parasite species. In conclusion, these new guidelines provide improved methodology and standardization of the FECRT for all major livestock species

    The relative contribution of climate to changes in lesser prairie-chicken abundance

    Get PDF
    Citation: Ross, B. E., Haukos, D., Hagen, C., & Pitman, J. (2016). The relative contribution of climate to changes in lesser prairie-chicken abundance. Ecosphere, 7(6), 11. doi:10.1002/ecs2.1323Managing for species using current weather patterns fails to incorporate the uncertainty associated with future climatic conditions; without incorporating potential changes in climate into conservation strategies, management and conservation efforts may fall short or waste valuable resources. Understanding the effects of climate change on species in the Great Plains of North America is especially important, as this region is projected to experience an increased magnitude of climate change. Of particular ecological and conservation interest is the lesser prairie-chicken (Tympanuchus pallidicinctus), which was listed as "threatened" under the U.S. Endangered Species Act in May 2014. We used Bayesian hierarchical models to quantify the effects of extreme climatic events (extreme values of the Palmer Drought Severity Index [PDSI]) relative to intermediate (changes in El Nino Southern Oscillation) and long-term climate variability (changes in the Pacific Decadal Oscillation) on trends in lesser prairie-chicken abundance from 1981 to 2014. Our results indicate that lesser prairie-chicken abundance on leks responded to environmental conditions of the year previous by positively responding to wet springs (high PDSI) and negatively to years with hot, dry summers (low PDSI), but had little response to variation in the El Nino Southern Oscillation and the Pacific Decadal Oscillation. Additionally, greater variation in abundance on leks was explained by variation in site relative to broad-scale climatic indices. Consequently, lesser prairie-chicken abundance on leks in Kansas is more strongly influenced by extreme drought events during summer than other climatic conditions, which may have negative consequences for the population as drought conditions intensify throughout the Great Plains

    Improving the Cost-efficiency of Preventive Chemotherapy:Impact of New Diagnostics on Stopping Decisions for Control of Schistosomiasis

    Get PDF
    Background: Control of schistosomiasis (SCH) relies on the regular distribution of preventive chemotherapy (PC) over many years. For the sake of sustainable SCH control, a decision must be made at some stage to scale down or stop PC. These "stopping decisions"are based on population surveys that assess whether infection levels are sufficiently low. However, the limited sensitivity of the currently used diagnostic (Kato-Katz [KK]) to detect low-intensity infections is a concern. Therefore, the use of new, more sensitive, molecular diagnostics has been proposed. Methods: Through statistical analysis of Schistosoma mansoni egg counts collected from Burundi and a simulation study using an established transmission model for schistosomiasis, we investigated the extent to which more sensitive diagnostics can improve decision making regarding stopping or continuing PC for the control of S. mansoni. Results: We found that KK-based strategies perform reasonably well for determining when to stop PC at a local scale. Use of more sensitive diagnostics leads to a marginally improved health impact (person-years lived with heavy infection) and comes at a cost of continuing PC for longer (up to around 3 years), unless the decision threshold for stopping PC is adapted upward. However, if this threshold is set too high, PC may be stopped prematurely, resulting in a rebound of infection levels and disease burden (+45% person-years of heavy infection). Conclusions: We conclude that the potential value of more sensitive diagnostics lies more in the reduction of survey-related costs than in the direct health impact of improved parasite control.</p

    Impact of Coronavirus Disease 2019 Pandemic on the Incidence and Management of Out‐of‐Hospital Cardiac Arrest in Patients Presenting With Acute Myocardial Infarction in England

    Get PDF
    Background: Studies have reported significant reduction in acute myocardial infarction–related hospitalizations during the coronavirus disease 2019 (COVID‐19) pandemic. However, whether these trends are associated with increased incidence of out‐of‐hospital cardiac arrest (OHCA) in this population is unknown. / Methods and Results: Acute myocardial infarction hospitalizations with OHCA during the COVID‐19 period (February 1–May 14, 2020) from the Myocardial Ischaemia National Audit Project and British Cardiovascular Intervention Society data sets were analyzed. Temporal trends were assessed using Poisson models with equivalent pre–COVID‐19 period (February 1–May 14, 2019) as reference. Acute myocardial infarction hospitalizations during COVID‐19 period were reduced by >50% (n=20 310 versus n=9325). OHCA was more prevalent during the COVID‐19 period compared with the pre–COVID‐19 period (5.6% versus 3.6%), with a 56% increase in the incidence of OHCA (incidence rate ratio, 1.56; 95% CI, 1.39–1.74). Patients experiencing OHCA during COVID‐19 period were likely to be older, likely to be women, likely to be of Asian ethnicity, and more likely to present with ST‐segment–elevation myocardial infarction. The overall rates of invasive coronary angiography (58.4% versus 71.6%; P<0.001) were significantly lower among the OHCA group during COVID‐19 period with increased time to reperfusion (mean, 2.1 versus 1.1 hours; P=0.05) in those with ST‐segment–elevation myocardial infarction. The adjusted in‐hospital mortality probability increased from 27.7% in February 2020 to 35.8% in May 2020 in the COVID‐19 group (P<.001). / Conclusions: In this national cohort of hospitalized patients with acute myocardial infarction, we observed a significant increase in incidence of OHCA during COVID‐19 period paralleled with reduced access to guideline‐recommended care and increased in‐hospital mortality

    An invasive mammal (the gray squirrel, sciurus carolinensis) commonly hosts diverse and atypical genotypes of the zoonotic pathogen borrelia burgdorferi Sensu Lato

    Get PDF
    Invasive vertebrate species can act as hosts for endemic pathogens and may alter pathogen community composition and dynamics. For the zoonotic pathogen Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, recent work shows invasive rodent species can be of high epidemiological importance and may support host-specific strains. This study examined the role of gray squirrels (Sciurus carolinensis) (n ďż˝ 679), an invasive species in the United Kingdom, as B. burgdorferi sensu lato hosts. We found that gray squirrels were frequently infested with Ixodes ricinus, the main vector of B. burgdorferi sensu lato in the United Kingdom, and 11.9% were infected with B. burgdorferi sensu lato. All four genospecies that occur in the United Kingdom were detected in gray squirrels, and unexpectedly, the bird-associated genospecies Borrelia garinii was most common. The second most frequent infection was with Borrelia afzelii. Genotyping of B. garinii and B. afzelii produced no evidence for strains associated with gray squirrels. Generalized linear mixed models (GLMM) identified tick infestation and date of capture as significant factors associated with B. burgdorferi sensu lato infection in gray squirrels, with infection elevated in early summer in squirrels infested with ticks. Invasive gray squirrels appear to become infected with locally circulating strains of B. burgdorferi sensu lato, and further studies are required to determine their role in community disease dynamics. Our findings highlight the fact that the role of introduced host species in B. burgdorferi sensu lato epidemiology can be highly variable and thus difficult to predict

    Between roost contact is essential for maintenance of European bat lyssavirus type-2 in Myotis daubentonii bat reservoir: 'The Swarming Hypothesis'

    Get PDF
    Many high-consequence human and animal pathogens persist in wildlife reservoirs. An understanding of the dynamics of these pathogens in their reservoir hosts is crucial to inform the risk of spill-over events, yet our understanding of these dynamics is frequently insufficient. Viral persistence in a wild bat population was investigated by combining empirical data and in-silico analyses to test hypotheses on mechanisms for viral persistence. A fatal zoonotic virus, European Bat lyssavirus type 2 (EBLV-2), in Daubenton's bats (Myotis daubentonii) was used as a model system. A total of 1839 M. daubentonii were sampled for evidence of virus exposure and excretion during a prospective nine year serial cross-sectional survey. Multivariable statistical models demonstrated age-related differences in seroprevalence, with significant variation in seropositivity over time and among roosts. An Approximate Bayesian Computation approach was used to model the infection dynamics incorporating the known host ecology. The results demonstrate that EBLV-2 is endemic in the study population, and suggest that mixing between roosts during seasonal swarming events is necessary to maintain EBLV-2 in the population. These findings contribute to understanding how bat viruses can persist despite low prevalence of infection, and why infection is constrained to certain bat species in multispecies roosts and ecosystems

    A general framework to support cost-efficient fecal egg count methods and study design choices for large-scale STH deworming programs-monitoring of therapeutic drug efficacy as a case study

    Get PDF
    BACKGROUND: Soil-transmitted helminth (STH) control programs currently lack evidence-based recommendations for cost-efficient survey designs for monitoring and evaluation. Here, we present a framework to provide evidence-based recommendations, using a case study of therapeutic drug efficacy monitoring based on the examination of helminth eggs in stool. METHODS: We performed an in-depth analysis of the operational costs to process one stool sample for three diagnostic methods (Kato-Katz, Mini-FLOTAC and FECPAKG2). Next, we performed simulations to determine the probability of detecting a truly reduced therapeutic efficacy for different scenarios of STH species (Ascaris lumbricoides, Trichuris trichiura and hookworms), pre-treatment infection levels, survey design (screen and select (SS); screen, select and retest (SSR) and no selection (NS)) and number of subjects enrolled (100-5,000). Finally, we integrated the outcome of the cost assessment into the simulation study to estimate the total survey costs and determined the most cost-efficient survey design. PRINCIPAL FINDINGS: Kato-Katz allowed for both the highest sample throughput and the lowest cost per test, while FECPAKG2 required both the most laboratory time and was the most expensive. Counting of eggs accounted for 23% (FECPAKG2) or >/=80% (Kato-Katz and Mini-FLOTAC) of the total time-to-result. NS survey designs in combination with Kato-Katz were the most cost-efficient to assess therapeutic drug efficacy in all scenarios of STH species and endemicity. CONCLUSIONS/SIGNIFICANCE: We confirm that Kato-Katz is the fecal egg counting method of choice for monitoring therapeutic drug efficacy, but that the survey design currently recommended by WHO (SS) should be updated. Our generic framework, which captures laboratory time and material costs, can be used to further support cost-efficient choices for other important surveys informing STH control programs. In addition, it can be used to explore the value of alternative diagnostic techniques, like automated egg counting, which may further reduce operational costs. TRIAL REGISTRATION: ClinicalTrials.gov NCT03465488

    Improving the Cost-efficiency of Preventive Chemotherapy : Impact of New Diagnostics on Stopping Decisions for Control of Schistosomiasis

    Get PDF
    BackgroundControl of schistosomiasis (SCH) relies on the regular distribution of preventive chemotherapy (PC) over many years. For the sake of sustainable SCH control, a decision must be made at some stage to scale down or stop PC. These "stopping decisions" are based on population surveys that assess whether infection levels are sufficiently low. However, the limited sensitivity of the currently used diagnostic (Kato-Katz [KK]) to detect low-intensity infections is a concern. Therefore, the use of new, more sensitive, molecular diagnostics has been proposed.MethodsThrough statistical analysis of Schistosoma mansoni egg counts collected from Burundi and a simulation study using an established transmission model for schistosomiasis, we investigated the extent to which more sensitive diagnostics can improve decision making regarding stopping or continuing PC for the control of S. mansoni.ResultsWe found that KK-based strategies perform reasonably well for determining when to stop PC at a local scale. Use of more sensitive diagnostics leads to a marginally improved health impact (person-years lived with heavy infection) and comes at a cost of continuing PC for longer (up to around 3 years), unless the decision threshold for stopping PC is adapted upward. However, if this threshold is set too high, PC may be stopped prematurely, resulting in a rebound of infection levels and disease burden (+45% person-years of heavy infection).ConclusionsWe conclude that the potential value of more sensitive diagnostics lies more in the reduction of survey-related costs than in the direct health impact of improved parasite control

    Improving the Cost-efficiency of Preventive Chemotherapy: Impact of New Diagnostics on Stopping Decisions for Control of Schistosomiasis

    Get PDF
    BACKGROUND: Control of schistosomiasis (SCH) relies on the regular distribution of preventive chemotherapy (PC) over many years. For the sake of sustainable SCH control, a decision must be made at some stage to scale down or stop PC. These "stopping decisions" are based on population surveys that assess whether infection levels are sufficiently low. However, the limited sensitivity of the currently used diagnostic (Kato-Katz [KK]) to detect low-intensity infections is a concern. Therefore, the use of new, more sensitive, molecular diagnostics has been proposed. METHODS: Through statistical analysis of Schistosoma mansoni egg counts collected from Burundi and a simulation study using an established transmission model for schistosomiasis, we investigated the extent to which more sensitive diagnostics can improve decision making regarding stopping or continuing PC for the control of S. mansoni. RESULTS: We found that KK-based strategies perform reasonably well for determining when to stop PC at a local scale. Use of more sensitive diagnostics leads to a marginally improved health impact (person-years lived with heavy infection) and comes at a cost of continuing PC for longer (up to around 3 years), unless the decision threshold for stopping PC is adapted upward. However, if this threshold is set too high, PC may be stopped prematurely, resulting in a rebound of infection levels and disease burden (+45% person-years of heavy infection). CONCLUSIONS: We conclude that the potential value of more sensitive diagnostics lies more in the reduction of survey-related costs than in the direct health impact of improved parasite control
    • …
    corecore