56 research outputs found

    A retrospective observational study of traumatic orthopaedic: related infections in Cambodia

    Get PDF
    Background: The objective of this study was to establish the type of microbiology along with antimicrobial resistance related to orthopedic related trauma infections in this area in order to help guide diagnosis and treatment regimens.Methods:This study evaluated the microbial etiology of orthopedic-related infections (ORI) between September 2015 and September 2016 in three tertiary hospitals in Phnom Penh, Cambodia. Clinical records were for clinical features and demographics. Standard laboratory bacteriology was used to recover, identified and perform antibiotic susceptibility testing (AST) by disk diffusion or broth microdilution.Results:119 patients were categorized as ORI cases. In the cases identified, median interquartile range (IQR) age was 38 (IQR: 26-46) years and 80.0% were male. Of the 119 ORI cases, a total of 156 bacterial strains were recovered, identified and after review, 128 of these pathogenic bacterial strains underwent AST. Among the gram-positive pathogens, the following susceptibilities were as follows: Staphylococcus aureus (n=57) (Methicillin-resistant S. aureus (n=35; 61.4%), (Methicillin‐sensitive S. aureus (n=22; 38.6%)), coagulase-negative staphylococcus (all MS-CoNS; n=6) and four isolates of Enterococcus sp. (non-VRE). A total of 44 gram-negative pathogens were recovered and AST was performed. Among these 44, a total of nine extended-spectrum beta-lactamase (ESBL) producing strains (20.5%) were discovered including Escherichia coli (n=8), Klebsiella pneumoniae (n=1) and carbapenemase-resistant Enterobacteriaceae (CRE) (Morganella morganii). In addition, a single E. coli isolate contained both the ESBL and CRE genotypes was noted.Conclusions:This data suggests that ORI rates in Cambodia appear to be comparable to other studies in the literature. However, further studies need to be done in order to establish definitive data related to orthopedic infections in the region

    Triple Combination of Amantadine, Ribavirin, and Oseltamivir Is Highly Active and Synergistic against Drug Resistant Influenza Virus Strains In Vitro

    Get PDF
    The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza

    Decreased Serologic Response in Vaccinated Military Recruits during 2011 Correspond to Genetic Drift in Concurrent Circulating Pandemic A/H1N1 Viruses

    Get PDF
    Population-based febrile respiratory illness surveillance conducted by the Department of Defense contributes to an estimate of vaccine effectiveness. Between January and March 2011, 64 cases of 2009 A/H1N1 (pH1N1), including one fatality, were confirmed in immunized recruits at Fort Jackson, South Carolina, suggesting insufficient efficacy for the pH1N1 component of the live attenuated influenza vaccine (LAIV).To test serologic protection, serum samples were collected at least 30 days post-vaccination from recruits at Fort Jackson (LAIV), Parris Island (LAIV and trivalent inactivated vaccine [TIV]) at Cape May, New Jersey (TIV) and responses measured against pre-vaccination sera. A subset of 78 LAIV and 64 TIV sera pairs from recruits who reported neither influenza vaccination in the prior year nor fever during training were tested by microneutralization (MN) and hemagglutination inhibition (HI) assays. MN results demonstrated that seroconversion in paired sera was greater in those who received TIV versus LAIV (74% and 37%). Additionally, the fold change associated with TIV vaccination was significantly different between circulating (2011) versus the vaccine strain (2009) of pH1N1 viruses (ANOVA p value = 0.0006). HI analyses revealed similar trends. Surface plasmon resonance (SPR) analysis revealed that the quantity, IgG/IgM ratios, and affinity of anti-HA antibodies were significantly greater in TIV vaccinees. Finally, sequence analysis of the HA1 gene in concurrent circulating 2011 pH1N1 isolates from Fort Jackson exhibited modest amino acid divergence from the vaccine strain.Among military recruits in 2011, serum antibody response differed by vaccine type (LAIV vs. TIV) and pH1N1 virus year (2009 vs. 2011). We hypothesize that antigen drift in circulating pH1N1 viruses contributed to reduce vaccine effectiveness at Fort Jackson. Our findings have wider implications regarding vaccine protection from circulating pH1N1 viruses in 2011-2012

    Persistence of serogroup C antibody responses following quadrivalent meningococcal conjugate vaccination in United States military personnel

    Get PDF
    AbstractSerogroup C meningococcal (MenC) disease accounts for one-third of all meningococcal cases and causes meningococcal outbreaks in the U.S. Quadrivalent meningococcal vaccine conjugated to diphtheria toxoid (MenACYWD) was recommended in 2005 for adolescents and high risk groups such as military recruits. We evaluated anti-MenC antibody persistence in U.S. military personnel vaccinated with either MenACYWD or meningococcal polysaccharide vaccine (MPSV4). Twelve hundred subjects vaccinated with MenACYWD from 2006 to 2008 or MPSV4 from 2002 to 2004 were randomly selected from the Defense Medical Surveillance System. Baseline serologic responses to MenC were assessed in all subjects; 100 subjects per vaccine group were tested during one of the following six post-vaccination time-points: 5–7, 11–13, 17–19, 23–25, 29–31, or 35–37 months. Anti-MenC geometric mean titers (GMT) were measured by rabbit complement serum bactericidal assay (rSBA) and geometric mean concentrations (GMC) by enzyme-linked immunosorbent assay (ELISA). Continuous variables were compared using the Wilcoxon rank sum test and the proportion of subjects with an rSBA titer ≥8 by chi-square. Pre-vaccination rSBA GMT was <8 for the MenACWYD group. rSBA GMT increased to 703 at 5–7 months post-vaccination and decreased by 94% to 43 at 3 years post-vaccination. GMT was significantly lower in the MenACWYD group at 5–7 months post-vaccination compared to the MPSV4 group. The percentage of MenACWYD recipients achieving an rSBA titer of ≥8 decreased from 87% at 5–7 months to 54% at 3 years. There were no significant differences between vaccine groups in the proportion of subjects with a titer of ≥8 at any time-point. GMC for the MenACWYD group was 0.14μg/mL at baseline, 1.07μg/mL at 5–7 months, and 0.66μg/mL at 3 years, and significantly lower than the MPSV4 group at all time-points. Anti-MenC responses wane following vaccination with MenACYWD; a booster dose is needed to maintain protective levels of circulating antibody

    A growing global network’s role in outbreak response: AFHSC-GEIS 2008-2009

    Get PDF
    A cornerstone of effective disease surveillance programs comprises the early identification of infectious threats and the subsequent rapid response to prevent further spread. Effectively identifying, tracking and responding to these threats is often difficult and requires international cooperation due to the rapidity with which diseases cross national borders and spread throughout the global community as a result of travel and migration by humans and animals. From Oct.1, 2008 to Sept. 30, 2009, the United States Department of Defense’s (DoD) Armed Forces Health Surveillance Center Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) identified 76 outbreaks in 53 countries. Emerging infectious disease outbreaks were identified by the global network and included a wide spectrum of support activities in collaboration with host country partners, several of which were in direct support of the World Health Organization’s (WHO) International Health Regulations (IHR) (2005). The network also supported military forces around the world affected by the novel influenza A/H1N1 pandemic of 2009. With IHR (2005) as the guiding framework for action, the AFHSC-GEIS network of international partners and overseas research laboratories continues to develop into a far-reaching system for identifying, analyzing and responding to emerging disease threats

    Serum Penicillin G Levels Are Lower Than Expected in Adults within Two Weeks of Administration of 1.2 Million Units

    Get PDF
    When introduced in the 1950s, benzathine penicillin G (BPG) was shown to be effective in eradicating group A beta-hemolytic streptococcus (GAS) for at least 3 weeks after administration. Several studies since the 1990s suggest that at 3–4 weeks serum penicillin G levels are less than adequate (below MIC90 of 0.016 µg/ml). We studied these levels for 4 weeks after the recommended dose of BPG in military recruits, for whom it is used as prophylaxis against GAS. The 329 subjects (mean age 20 years) each received 1.2 million units BPG IM and gave sera 1 day post injection and twice more at staggered time points over 4 weeks. Serum penicillin G levels were measured by liquid chromatography/tandem mass spectometry. The half-life of serum penicillin G was 4.1 days. By day 11, mean levels were <0.02 µg/ml, and by day 15<0.01 µg/ml. Levels in more than 50% of the subjects were below 0.02 µg/ml on day 9, and <.01 µg/ml on day 16. There was no demonstrable effect of subject body-surface area nor of the four different lots of BPG used. These data indicate that in healthy young adults serum penicillin G levels become less than protective <2½ weeks after injection of 1.2 million units of BPG. The findings require serious consideration in future medical and public health recommendations for treatment and prophylaxis of GAS upper respiratory tract infections

    Inference of Antibiotic Resistance and Virulence among Diverse Group A Streptococcus Strains Using emm Sequencing and Multilocus Genotyping Methods

    Get PDF
    typing (direct sequencing of the genomic segment coding for the antigenic portion of the M protein) or by multilocus genotyping methods. Phenotype analysis, including critical AbR typing, is generally achieved by much slower and more laborious direct culture-based methods. type and the associated AbR and virulence phenotypes. types

    Single Assay for Simultaneous Detection and Differential Identification of Human and Avian Influenza Virus Types, Subtypes, and Emergent Variants

    Get PDF
    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents

    Epidemic infectious gastrointestinal illness aboard U.S. Navy ships deployed to the Middle East during peacetime operations – 2000–2001

    Get PDF
    BACKGROUND: Infectious gastrointestinal illness (IGI) outbreaks have been reported in U.S. Navy ships and could potentially have an adverse mission impact. Studies to date have been anecdotal. METHODS: We conducted a retrospective analysis of weekly reported disease and non-battle injury health data collected in 2000 – 2001 from 44 U.S. Navy ships while sailing in the 5(th )Fleet (Persian Gulf and nearby seas). RESULTS: During this period, 11 possible IGI outbreaks were identified. Overall, we found 3.3 outbreaks per 100 ship-weeks, a mean outbreak duration of 4.4 weeks, and a mean cumulative ship population attack rate of 3.6%. Morbidity, represented by days lost due to personnel being placed on sick-in-quarters status, was higher during outbreak weeks compared to non-outbreak weeks (p = 0.002). No clear seasonal distribution was identified. CONCLUSION: Explosive outbreaks due to viruses and bacteria with the potential of incapacitating large proportions of the crew raise serious concerns of mission impact and military readiness

    Outbreak of Pneumonia in the Setting of Fatal Pneumococcal Meningitis among US Army Trainees: Potential Role of Chlamydia pneumoniae Infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compared to the civilian population, military trainees are often at increased risk for respiratory infections. We investigated an outbreak of radiologically-confirmed pneumonia that was recognized after 2 fatal cases of serotype 7F pneumococcal meningitis were reported in a 303-person military trainee company (Alpha Company).</p> <p>Methods</p> <p>We reviewed surveillance data on pneumonia and febrile respiratory illness at the training facility; conducted chart reviews for cases of radiologically-confirmed pneumonia; and administered surveys and collected nasopharyngeal swabs from trainees in the outbreak battalion (Alpha and Hotel Companies), associated training staff, and trainees newly joining the battalion.</p> <p>Results</p> <p>Among Alpha and Hotel Company trainees, the average weekly attack rates of radiologically-confirmed pneumonia were 1.4% and 1.2% (most other companies at FLW: 0-0.4%). The pneumococcal carriage rate among all Alpha Company trainees was 15% with a predominance of serotypes 7F and 3. <it>Chlamydia pneumoniae </it>was identified from 31% of specimens collected from Alpha Company trainees with respiratory symptoms.</p> <p>Conclusion</p> <p>Although the etiology of the outbreak remains unclear, the identification of both <it>S. pneumoniae </it>and <it>C. pneumoniae </it>among trainees suggests that both pathogens may have contributed either independently or as cofactors to the observed increased incidence of pneumonia in the outbreak battalion and should be considered as possible etiologies in outbreaks of pneumonia in the military population.</p
    corecore