612 research outputs found
Non-Fermi liquid angle resolved photoemission lineshapes of Li0.9Mo6O17
A recent letter by Xue et al. (PRL v.83, 1235 ('99)) reports a Fermi-Liquid
(FL) angle resolved photoemission (ARPES) lineshape for quasi one-dimensional
Li0.9Mo6O17, contradicting our report (PRL v.82, 2540 ('99)) of a non-FL
lineshape in this material. Xue et al. attributed the difference to the
improved angle resolution. In this comment, we point out that this reasoning is
flawed. Rather, we find that their data have fundamental differences from other
ARPES results and also band theory.Comment: To be published as a PRL Commen
Bulk Band Gaps in Divalent Hexaborides
Complementary angle-resolved photoemission and bulk-sensitive k-resolved
resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV
X-point gap between the valence and conduction bands, in contradiction to the
band overlap assumed in several models of their novel ferromagnetism. This
semiconducting gap implies that carriers detected in transport measurements
arise from defects, and the measured location of the bulk Fermi level at the
bottom of the conduction band implicates boron vacancies as the origin of the
excess electrons. The measured band structure and X-point gap in CaB_6
additionally provide a stringent test case for proper inclusion of many-body
effects in quasi-particle band calculations.Comment: 4 pages, 3 figures; new RIXS analysis; accepted for publication in
PR
ARPES and NMTO Wannier Orbital Theory of LiMoO - Implications for Unusually Robust Quasi-One Dimensional Behavior
We present the results of a combined study by band theory and angle resolved
photoemission spectroscopy (ARPES) of the purple bronze,
LiMoO. Structural and electronic origins of its unusually
robust quasi-one dimensional (quasi-1D) behavior are investigated in detail.
The band structure, in a large energy window around the Fermi energy, is
basically 2D and formed by three Mo -like extended Wannier orbitals,
each one giving rise to a 1D band running at a 120 angle to the two
others. A structural "dimerization" from to gaps
the and bands while leaving the bands metallic in the gap, but
resonantly coupled to the gap edges and, hence, to the other directions. The
resulting complex shape of the quasi-1D Fermi surface (FS), verified by our
ARPES, thus depends strongly on the Fermi energy position in the gap, implying
a great sensitivity to Li stoichiometry of properties dependent on the FS, such
as FS nesting or superconductivity. The strong resonances prevent either a
two-band tight-binding model or a related real-space ladder picture from giving
a valid description of the low-energy electronic structure. We use our extended
knowledge of the electronic structure to newly advocate for framing
LiMoO as a weak-coupling material and in that framework can
rationalize both the robustness of its quasi-1D behavior and the rather large
value of its Luttinger liquid (LL) exponent . Down to a temperature of
6K we find no evidence for a theoretically expected downward
renormalization of perpendicular single particle hopping due to LL fluctuations
in the quasi-1D chains.Comment: 53 pages, 17 Figures, 6 year
Fermi Surface of Metallic VO from Angle-Resolved Photoemission: Mid-level Filling of Bands
Using angle resolved photoemission spectroscopy (ARPES) we report the first
band dispersions and distinct features of the bulk Fermi surface (FS) in the
paramagnetic metallic phase of the prototypical metal-insulator transition
material VO. Along the -axis we observe both an electron pocket and
a triangular hole-like FS topology, showing that both V 3 and
states contribute to the FS. These results challenge the existing
correlation-enhanced crystal field splitting theoretical explanation for the
transition mechanism and pave the way for the solution of this mystery.Comment: 5 pages, 4 figures plus supplement 12 pages, 3 figures, 1 tabl
- …