3 research outputs found

    Electronic Sensing Platform (ESP) Based on Open-Gate Junction Field-Effect Transistor (OG-JFET) for Life Science Applications: Design, Modeling and Experimental Results

    No full text
    This paper presents a new field-effect sensor called open-gate junction gate field-effect transistor (OG-JFET) for biosensing applications. The OG-JFET consists of a p-type channel on top of an n-type layer in which the p-type serves as the sensing conductive layer between two ohmic contacted sources and drain electrodes. The structure is novel as it is based on a junction field-effect transistor with a subtle difference in that the top gate (n-type contact) has been removed to open the space for introducing the biomaterial and solution. The channel can be controlled through a back gate, enabling the sensor’s operation without a bulky electrode inside the solution. In this research, in order to demonstrate the sensor’s functionality for chemical and biosensing, we tested OG-JFET with varying pH solutions, cell adhesion (human oral neutrophils), human exhalation, and DNA molecules. Moreover, the sensor was simulated with COMSOL Multiphysics to gain insight into the sensor operation and its ion-sensitive capability. The complete simulation procedures and the physics of pH modeling is presented here, being numerically solved in COMSOL Multiphysics software. The outcome of the current study puts forward OG-JFET as a new platform for biosensing applications

    Recent Progress and Challenges on the Microfluidic Assay of Pathogenic Bacteria Using Biosensor Technology

    No full text
    Microfluidic technology is one of the new technologies that has been able to take advantage of the specific properties of micro and nanoliters, and by reducing the costs and duration of tests, it has been widely used in research and treatment in biology and medicine. Different materials are often processed into miniaturized chips containing channels and chambers within the microscale range. This review (containing 117 references) demonstrates the significance and application of nanofluidic biosensing of various pathogenic bacteria. The microfluidic application devices integrated with bioreceptors and advanced nanomaterials, including hyperbranched nano-polymers, carbon-based nanomaterials, hydrogels, and noble metal, was also investigated. In the present review, microfluid methods for the sensitive and selective recognition of photogenic bacteria in various biological matrices are surveyed. Further, the advantages and limitations of recognition methods on the performance and efficiency of microfluidic-based biosensing of photogenic bacteria are critically investigated. Finally, the future perspectives, research opportunities, potential, and prospects on the diagnosis of disease related to pathogenic bacteria based on microfluidic analysis of photogenic bacteria are provided

    Oral Cells-On-Chip: Design, Modeling and Experimental Results

    No full text
    Recent advances in periodontal studies have attracted the attention of researchers to the relation between oral cells and gum diseases, which is a real threat to overall human health. Among various microfabrication technologies, Complementary Metal Oxide Semiconductors (CMOSs) enable the development of low-cost integrated sensors and circuits for rapid and accurate assessment of living cells that can be employed for the early detection and control of periodontal diseases. This paper presents a CMOS capacitive sensing platform that can be considered as an alternative for the analysis of salivatory cells such as oral neutrophils. This platform consists of two sensing electrodes connected to a read-out capacitive circuitry designed and fabricated on the same chip using Austria Mikro Systeme (AMS) 0.35 µm CMOS process. A graphical user interface (GUI) was also developed to interact with the capacitive read-out system and the computer to monitor the capacitance changes due to the presence of saliva cells on top of the chip. Thanks to the wide input dynamic range (IDR) of more than 400 femto farad (fF) and high resolution of 416 atto farad (aF), the experimental and simulation results demonstrate the functionality and applicability of the proposed sensor for monitoring cells in a small volume of 1 µL saliva samples. As per these results, the hydrophilic adhesion of oral cells on the chip varies the capacitance of interdigitated electrodes (IDEs). These capacitance changes then give an assessment of the oral cells existing in the sample. In this paper, the simulation and experimental results set a new stage for emerging sensing platforms for testing oral samples
    corecore