5 research outputs found

    Application of a Plug-and-Play Immunogenicity Assay in Cynomolgus Monkey Serum for ADCs at Early Stages of Drug Development

    No full text
    Immunogenicity assessment during early stages of nonclinical biotherapeutic development is not always warranted. It is rarely predictive for clinical studies and evidence for the presence of anti-drug antibodies (ADAs) may be inferred from the pharmacokinetic (PK) profile. However, collecting and banking samples during the course of the study are prudent for confirmation and a deeper understanding of the impact on PK and safety. Biotherapeutic-specific ADA assays commonly developed can require considerable time and resources. In addition, the ADA assay may not be ready when needed if the study of PK and safety data triggers assay development. During early stages of drug development for antibody-drug conjugates (ADCs), there is the added complication of the potential inclusion of several molecular variants in a study, differing in the linker and/or drug components. To simplify analysis of ADAs at this stage, we developed plug-and-play generic approaches for both the assay format and the data analysis steps. Firstly, the assay format uses generic reagents to detect ADAs. Secondly, we propose a cut point methodology based on animal specific baseline variability instead of a population data approach. This assay showed good sensitivity, drug tolerance, and reproducibility across a variety of antibody-derived biotherapeutics without the need for optimization across molecules

    Application of a Plug-and-Play Immunogenicity Assay in Cynomolgus Monkey Serum for ADCs at Early Stages of Drug Development

    No full text
    Immunogenicity assessment during early stages of nonclinical biotherapeutic development is not always warranted. It is rarely predictive for clinical studies and evidence for the presence of anti-drug antibodies (ADAs) may be inferred from the pharmacokinetic (PK) profile. However, collecting and banking samples during the course of the study are prudent for confirmation and a deeper understanding of the impact on PK and safety. Biotherapeutic-specific ADA assays commonly developed can require considerable time and resources. In addition, the ADA assay may not be ready when needed if the study of PK and safety data triggers assay development. During early stages of drug development for antibody-drug conjugates (ADCs), there is the added complication of the potential inclusion of several molecular variants in a study, differing in the linker and/or drug components. To simplify analysis of ADAs at this stage, we developed plug-and-play generic approaches for both the assay format and the data analysis steps. Firstly, the assay format uses generic reagents to detect ADAs. Secondly, we propose a cut point methodology based on animal specific baseline variability instead of a population data approach. This assay showed good sensitivity, drug tolerance, and reproducibility across a variety of antibody-derived biotherapeutics without the need for optimization across molecules
    corecore