3 research outputs found

    Adaptive Immune Response to Vaccinia Virus LIVP Infection of BALB/c Mice and Protection against Lethal Reinfection with Cowpox Virus

    No full text
    Mass vaccination has played a critical role in the global eradication of smallpox. Various vaccinia virus (VACV) strains, whose origin has not been clearly documented in most cases, have been used as live vaccines in different countries. These VACV strains differed in pathogenicity towards various laboratory animals and in reactogenicity exhibited upon vaccination of humans. In this work, we studied the development of humoral and cellular immune responses in BALB/c mice inoculated intranasally (i.n.) or intradermally (i.d.) with the VACV LIVP strain at a dose of 105 PFU/mouse, which was used in Russia as the first generation smallpox vaccine. Active synthesis of VACV-specific IgM in the mice occurred on day 7 after inoculation, reached a maximum on day 14, and decreased by day 29. Synthesis of virus-specific IgG was detected only from day 14, and the level increased significantly by day 29 after infection of the mice. Immunization (i.n.) resulted in significantly higher production of VACV-specific antibodies compared to that upon i.d. inoculation of LIVP. There were no significant differences in the levels of the T cell response in mice after i.n. or i.d. VACV administration at any time point. The maximum level of VACV-specific T-cells was detected on day 14. By day 29 of the experiment, the level of VACV-specific T-lymphocytes in the spleen of mice significantly decreased for both immunization procedures. On day 30 after immunization with LIVP, mice were infected with the cowpox virus at a dose of 46 LD50. The i.n. immunized mice were resistant to this infection, while 33% of i.d. immunized mice died. Our findings indicate that the level of the humoral immune response to vaccination may play a decisive role in protection of animals from orthopoxvirus reinfection

    Enhancing the Immunogenicity of Vaccinia Virus

    No full text
    The conventional live smallpox vaccine based on the vaccinia virus (VACV) cannot be widely used today because it is highly reactogenic. Therefore, there is a demand for designing VACV variants possessing enhanced immunogenicity, making it possible to reduce the vaccine dose and, therefore, significantly eliminate the pathogenic effect of the VACV on the body. In this study, we analyzed the development of the humoral and T cell-mediated immune responses elicited by immunizing mice with low-dose VACV variants carrying the mutant A34R gene (which increases production of extracellular virions) or the deleted A35R gene (whose protein product inhibits antigen presentation by the major histocompatibility complex class II). The VACV LIVP strain, which is used as a smallpox vaccine in Russia, and its recombinant variants LIVP-A34R*, LIVP-dA35R, and LIVP-A34R*-dA35R, were compared upon intradermal immunization of BALB/c mice at a dose of 104 pfu/animal. The strongest T cell-mediated immunity was detected in mice infected with the LIVP-A34R*-dA35R virus. The parental LIVP strain induced a significantly lower antibody level compared to the strains carrying the modified A34R and A35R genes. Simultaneous modification of the A34R gene and deletion of the A35R gene in VACV LIVP synergistically enhanced the immunogenic properties of the LIVP-A34R*-dA35R virus

    Immunogenic and Protective Properties of Recombinant Hemagglutinin of Influenza A (H5N8) Virus

    No full text
    In this study, we characterized recombinant hemagglutinin (HA) of influenza A (H5N8) virus produced in Chinese hamster ovary cells (CHO-K1s). Immunochemical analysis showed that the recombinant hemagglutinin was recognized by the serum of ferrets infected with influenza A (H5N8) virus, indicating that its antigenic properties were retained. Two groups of Balb/c mice were immunized with intramuscular injection of recombinant hemagglutinin or propiolactone inactivated A/Astrakhan/3212/2020 (H5N8) influenza virus. The results demonstrated that both immunogens induced a specific antibody response as determined by ELISA. Virus neutralization assay revealed that sera of immunized animals were able to neutralize A/turkey/Stavropol/320-01/2020 (H5N8) influenza virus—the average neutralizing titer was 2560. Immunization with both recombinant HA/H5 hemagglutinin and inactivated virus gave 100% protection against lethal H5N8 virus challenge. This study shows that recombinant HA (H5N8) protein may be a useful antigen candidate for developing subunit vaccines against influenza A (H5N8) virus with suitable immunogenicity and protective efficacy
    corecore