22 research outputs found

    Mesenchymal Stromal Cells as a Driver of Inflammaging

    Get PDF
    Life expectancy and age-related diseases burden increased significantly over the past few decades. Age-related conditions are commonly discussed in a very limited paradigm of depleted cellular proliferation and maturation with exponential accumulation of senescent cells. However, most recent evidence showed that the majority of age-associated ailments, i.e., diabetes mellitus, cardiovascular diseases and neurodegeneration. These diseases are closely associated with tissue nonspecific inflammation triggered and controlled by mesenchymal stromal cell secretion. Mesenchymal stromal cells (MSCs) are known as the most common type of cells for therapeutic approaches in clinical practice. Side effects and complications of MSC-based treatments increased interest in the MSCs secretome as an alternative concept for validation tests in regenerative medicine. The most recent data also proposed it as an ideal tool for cell-free regenerative therapy and tissue engineering. However, senescent MSCs secretome was shown to hold the role of ‘key-driver’ in inflammaging. We aimed to review the immunomodulatory effects of the MSCs-secretome during cell senescence and provide eventual insight into the interpretation of its beneficial biological actions in inflammaging-associated diseases

    Refinement of Animal Experiments: Replacing Traumatic Methods of Laboratory Animal Marking with Non-Invasive Alternatives

    Get PDF
    Reliable methods for identifying rodents play an important role in ensuring the success of preclinical studies. However, animal identification remains a trivial laboratory routine that is not often discussed, despite the fact that more than 6 million rodents are used in animal studies each year. Currently, there are extensive regulations in place to ensure adequate anesthesia and to reduce animal suffering during experiments. At the same time, not enough attention is paid to the comfort of rodents during routine identification procedures, which can be painful and cause some complications. In order to achieve the highest ethical standards in laboratory research, we must minimize animal discomfort during the identification phase. In this article, we discuss traumatic methods of identification and describe several painless methods for marking in long-term experimental studies. The use of non-traumatic and non-invasive methods requires the renewal of marks as they fade and additional handling of the rodents. Laboratory personnel must be trained in stress-minimizing handling techniques to make mark renewal less stressful

    Post-Implantation Inflammatory Responses to Xenogeneic Tissue-Engineered Cartilage Implanted in Rabbit Trachea: The Role of Cultured Chondrocytes in the Modification of Inflammation

    Get PDF
    Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation

    Stem Cells and Their Derivatives: Unlocking the Promising Potential of Minimally Manipulated Cells for Tissue Engineering

    No full text
    We’ve read with great interest the article by Smolinska et al. entitled “Stem Cells and Their Derivatives: An Implication for the Regeneration of Nonunion Fractures” regarding the recent scientific studies dealing with the treatment of nonunion fractures in clinical and preclinical settings using Mesenchymal Stem Cell (MSC)-based therapeutic techniques. Bone tissue regeneration is a dynamic process that involves the restoration of damaged or lost bone structure and function. Traditional approaches such as autografts and allografts, platelet rich plasma (PRP) treatment and cell therapies, have limitations, including donor site morbidity and immunologic concerns, as well as cell culture and processing requirements. In contrast, the use of minimally manipulated cells that do not require culturing has emerged as a promising alternative that offers several advantages in bone tissue regeneration

    Mesenchymal Stromal Cells as a Driver of Inflammaging

    No full text
    Life expectancy and age-related diseases burden increased significantly over the past few decades. Age-related conditions are commonly discussed in a very limited paradigm of depleted cellular proliferation and maturation with exponential accumulation of senescent cells. However, most recent evidence showed that the majority of age-associated ailments, i.e., diabetes mellitus, cardiovascular diseases and neurodegeneration. These diseases are closely associated with tissue nonspecific inflammation triggered and controlled by mesenchymal stromal cell secretion. Mesenchymal stromal cells (MSCs) are known as the most common type of cells for therapeutic approaches in clinical practice. Side effects and complications of MSC-based treatments increased interest in the MSCs secretome as an alternative concept for validation tests in regenerative medicine. The most recent data also proposed it as an ideal tool for cell-free regenerative therapy and tissue engineering. However, senescent MSCs secretome was shown to hold the role of ‘key-driver’ in inflammaging. We aimed to review the immunomodulatory effects of the MSCs-secretome during cell senescence and provide eventual insight into the interpretation of its beneficial biological actions in inflammaging-associated diseases

    Assessment of Immunological Responses - A Novel Challenge in Tissue Engineering and Regenerative Medicine

    No full text
    The number of articles on tissue engineering and regenerative medicine has increased dramatically in the last decade; however, the number of clinically implemented techniques remains small. Possible reasons include insufficient investigation of immune reactions on implanted tissue-engineered grafts and cells or a lack of consensus regarding which immunological tests must be performed to evaluate immunological responses. To provide an example of insufficiency in the assessment of immunological reactions, we analyzed three papers published between 2020 and 2021 and discussed the possibility of creating a standardized assay palette for the assessment of immunological responses in different types of implants

    Refinement of Animal Experiments: Replacing Traumatic Methods of Laboratory Animal Marking with Non-Invasive Alternatives

    No full text
    Reliable methods for identifying rodents play an important role in ensuring the success of preclinical studies. However, animal identification remains a trivial laboratory routine that is not often discussed, despite the fact that more than 6 million rodents are used in animal studies each year. Currently, there are extensive regulations in place to ensure adequate anesthesia and to reduce animal suffering during experiments. At the same time, not enough attention is paid to the comfort of rodents during routine identification procedures, which can be painful and cause some complications. In order to achieve the highest ethical standards in laboratory research, we must minimize animal discomfort during the identification phase. In this article, we discuss traumatic methods of identification and describe several painless methods for marking in long-term experimental studies. The use of non-traumatic and non-invasive methods requires the renewal of marks as they fade and additional handling of the rodents. Laboratory personnel must be trained in stress-minimizing handling techniques to make mark renewal less stressful

    Intraoperative Creation of Tissue-Engineered Grafts with Minimally Manipulated Cells: New Concept of Bone Tissue Engineering In Situ

    No full text
    Transfer of regenerative approaches into clinical practice is limited by strict legal regulation of in vitro expanded cells and risks associated with substantial manipulations. Isolation of cells for the enrichment of bone grafts directly in the Operating Room appears to be a promising solution for the translation of biomedical technologies into clinical practice. These intraoperative approaches could be generally characterized as a joint concept of tissue engineering in situ. Our review covers techniques of intraoperative cell isolation and seeding for the creation of tissue-engineered grafts in situ, that is, directly in the Operating Room. Up-to-date, the clinical use of tissue-engineered grafts created in vitro remains a highly inaccessible option. Fortunately, intraoperative tissue engineering in situ is already available for patients who need advanced treatment modalities

    Adverse events, side effects and complications in mesenchymal stromal cell-based therapies

    No full text
    Numerous clinical studies have shown a wide clinical potential of mesenchymal stromal cells (MSCs) application. However, recent experience has accumulated numerous reports of adverse events and side effects associated with MSCs therapy. Furthermore, the strategies and methods of MSCs therapy did not change significantly in recent decades despite the clinical impact and awareness of potential complications. An extended understanding of limitations could lead to a wider clinical implementation of safe cell therapies and avoid harmful approaches. Therefore, our objective was to summarize the possible negative effects observed during MSCs-based therapies. We were also aimed to discuss the risks caused by weaknesses in cell processing, including isolation, culturing, and storage. Cell processing and cell culture could dramatically influence cell population profile, change protein expression and cell differentiation paving the way for future negative effects. Long-term cell culture led to accumulation of chromosomal abnormalities. Overdosed antibiotics in culture media enhanced the risk of mycoplasma contamination. Clinical trials reported thromboembolism and fibrosis as the most common adverse events of MSCs therapy. Their delayed manifestation generally depends on the patient’s individual phenotype and requires specific awareness during the clinical trials with obligatory inclusion in the patient’ informed consents. Finally we prepared the safety checklist, recommended for clinical specialists before administration or planning of MSCs therapy
    corecore