3 research outputs found

    OFAR: A Multimodal Evidence Retrieval Framework for Illegal Live-streaming Identification

    Full text link
    Illegal live-streaming identification, which aims to help live-streaming platforms immediately recognize the illegal behaviors in the live-streaming, such as selling precious and endangered animals, plays a crucial role in purifying the network environment. Traditionally, the live-streaming platform needs to employ some professionals to manually identify the potential illegal live-streaming. Specifically, the professional needs to search for related evidence from a large-scale knowledge database for evaluating whether a given live-streaming clip contains illegal behavior, which is time-consuming and laborious. To address this issue, in this work, we propose a multimodal evidence retrieval system, named OFAR, to facilitate the illegal live-streaming identification. OFAR consists of three modules: Query Encoder, Document Encoder, and MaxSim-based Contrastive Late Intersection. Both query encoder and document encoder are implemented with the advanced OFA encoder, which is pretrained on a large-scale multimodal dataset. In the last module, we introduce contrastive learning on the basis of the MaxiSim-based late intersection, to enhance the model's ability of query-document matching. The proposed framework achieves significant improvement on our industrial dataset TaoLive, demonstrating the advances of our scheme

    Predicting Equivalent Static Density of Fuzzy Ball Drilling Fluid by BP Artificial Neutral Network

    No full text
    A back-propagation artificial neutral network model is built based on 220 groups of PVT experimental data to predict the equivalent static density versus depth for fuzzy ball drilling fluid which is a kind of gas-liquid two-phase material. The model is applied in the Mo80-C well located in Sichuan Province of China; the maximum relative error between calculated results and measured data is less than 2%. By comparing with the multiple regression model, the present model has a higher precision and flexibility. The equivalent static density of fuzzy ball drilling fluid from ground to the depth of 6000 m is predicted by the present model, and the results show that the equivalent static density of fuzzy ball drilling fluid will decrease slowly with the growth of depth, which indicates that the gas cores of the fuzzy balls still can exist as deep as 6000 m
    corecore