64 research outputs found

    Detecting Backdoors During the Inference Stage Based on Corruption Robustness Consistency

    Full text link
    Deep neural networks are proven to be vulnerable to backdoor attacks. Detecting the trigger samples during the inference stage, i.e., the test-time trigger sample detection, can prevent the backdoor from being triggered. However, existing detection methods often require the defenders to have high accessibility to victim models, extra clean data, or knowledge about the appearance of backdoor triggers, limiting their practicality. In this paper, we propose the test-time corruption robustness consistency evaluation (TeCo), a novel test-time trigger sample detection method that only needs the hard-label outputs of the victim models without any extra information. Our journey begins with the intriguing observation that the backdoor-infected models have similar performance across different image corruptions for the clean images, but perform discrepantly for the trigger samples. Based on this phenomenon, we design TeCo to evaluate test-time robustness consistency by calculating the deviation of severity that leads to predictions' transition across different corruptions. Extensive experiments demonstrate that compared with state-of-the-art defenses, which even require either certain information about the trigger types or accessibility of clean data, TeCo outperforms them on different backdoor attacks, datasets, and model architectures, enjoying a higher AUROC by 10% and 5 times of stability.Comment: Accepted by CVPR2023. Code is available at https://github.com/CGCL-codes/TeC

    Effects of adding Allium mongolicum Regel powder and yeast cultures to diet on rumen microbial flora of Tibetan sheep (Ovis aries)

    Get PDF
    The purpose of this experiment was to study the effect of Allium mongolicum Regel powder (AMR) and yeast cultures (YC) on rumen microbial diversity in Tibetan sheep in different Ecological niches. A total of 40 male Tibetan lambs with an initial weight of 18.56 ± 1.49 kg (6 months old) were selected and divided into four groups (10 sheep/pen; n = 10). In the Control Group, each animal was grazed for 8 h per day, in Group I, each animal was supplemented with 200 g of concentrate per day, in Group II, each animal was supplemented with 200 g of concentrate and 10 g of AMR per day, in Group III, each animal was supplemented with 200 g of concentrate and 20 g of YC per day. The experiment lasted 82 days and consisted of a 7-day per-feeding period and a 75-day formal period. The results indicated that at the phylum level, the abundance of Bacteroidota and Verrucomimicrobiota in L-Group II and L-Group III was increased, while the abundance of Proteobacteria was decreased in the LA (Liquid-Associated) groups. The proportion of F/B in S-Group II and S-Group III was increased compared to S-Group I and S-CON in the SA (Soild-Associated) group. At the genus level, the abundance of uncultured_rumen_bacterium and Eubacterium_ruminantium_group in L-Group II and L-Group III was increased. Furthermore, while the abundance of Rikenellaceae_RC9_gut_group was decreased in the LA, the abundance of Prevotella and Eubacterium_ruminantium_group was increased in the S-Group II and S-Group III compared to S-Group I and S-CON. The abundance of probable_genus_10 was the highest in S-Group II in the SA group. After the addition of YC and AMR, there was an increase in rumen microbial abundance, which was found to be beneficial for the stability of rumen flora and had a positive impact on rumen health

    Prickly Ash Seeds improve immunity of Hu sheep by changing the diversity and structure of gut microbiota

    Get PDF
    Prickly Ash Seeds (PAS), as a traditional Chinese medicinal herb, have pharmacological effects such as anti-asthma, anti-thrombotic, and anti-bacterial, but their impact on gut microbiota is still unclear. This study used a full-length 16 s rRNA gene sequencing technique to determine the effect of adding PAS to the diet on the structure and distribution of gut microbiota in Hu sheep. All lambs were randomly divided into two groups, the CK group was fed with a basal ration, and the LZS group was given a basal diet with 3% of PAS added to the ration. The levels of inflammatory factors (IL-10, IL-1β, and TNF-α) in intestinal tissues were measured by enzyme-linked immunosorbent assay (ELISA) for Hu sheep in the CK and LZS group. The results indicate that PAS can increase the diversity and richness of gut microbiota, and can affect the community composition of gut microbiota. LEfSe analysis revealed that Verrucomicrobiota, Kiritimatiella, WCHB 41, and uncultured_rumen_bacterium were significantly enriched in the LZS group. KEGG pathway analysis found that LZS was significantly higher than the CK group in the Excretory system, Folding, sorting and degradation, and Immune system pathways (p < 0.05). The results of ELISA assay showed that the level of IL-10 was significantly higher in the LZS group than in the CK group (p < 0.05), and the levels of TNF-α and IL-1β were significantly higher in the CK group than in the LZS group (p < 0.05). LEfSe analysis revealed that the dominant flora in the large intestine segment changed from Bacteroidota and Gammaproteobacteria to Akkermansiaceae and Verrucomicrobiae after PAS addition to Hu sheep lambs; the dominant flora in the small intestine segment changed from Lactobacillales and Aeriscardovia to Kiritimatiellae and WCHB1 41. In conclusion, the addition of PAS to sheep diets can increase the number and types of beneficial bacteria in the intestinal tract, improve lamb immunity, and reduce intestinal inflammation. It provides new insights into healthy sheep production

    Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System

    No full text
    With regard to global climate change due to increasing concentration in greenhouse gases, particularly carbon dioxide (CO2), it is important to examine its potential impact on crop development and production. We used statistically-downscaled climate data from 28 Global Climate Models (GCMs) and the Agricultural Production Systems sIMulator (APSIM)–Wheat model to simulate the impact of future climate change on wheat production. Two future scenarios (RCP4.5 and RCP8.5) were used for atmospheric greenhouse gas concentrations during two different future periods (2031–2060 referred to as 40S and 2071–2100 referred to as 80S). Relative to the baseline period (1981–2010), the trends in mean daily temperature and radiation significantly increased across all stations under the future scenarios. Furthermore, the trends in precipitation increased under future climate scenarios. Due to climate change, the trend in wheat phenology significantly advanced. The early flowering and maturity dates shortened both the vegetative growth stage (VGP) and the whole growth period (WGP). As the advance in the days of maturity was more than that in flowering, the length of the reproductive growth stage (RGP) of spring wheat was shortened. However, as the advance in the date of maturity was less than that of flowering, the RGP of winter wheat was extended. When the increase in CO2 concentration under future climate scenarios was not considered, the trend in change in wheat production for the baseline declined. In contrast, under increased CO2 concentration, the trend in wheat yield increased for most of the stations (except for Nangong station) under future climatic conditions. Winter wheat and spring wheat evapotranspiration (ET) decreased across all stations under the two future climate scenarios. As wheat yield increased with decreasing water consumption (as ET) under the future climatic conditions, water use efficiency (WUE) significantly improved in the future period
    • …
    corecore