775 research outputs found
Growth behaviour of Ge nano-islands on the nanosized Si{111} facets bordering on two {100} planes
Abstract Si(100) substrates were used to fabricate various nanosized {111} facets between the (100) planes using photolithography and anisotropic wet chemical etching. Following simultaneous Ge chemical vapour deposition on the neighbouring (100) and {111} facets, the Ge nano-island formation and distribution was observed on both the (100) terraces and the {111} side walls using a dynamical atomic force microscope. The nano-island formation on the nanosized {111} strip facets was found to be strongly suppressed upon reducing the strip width due primarily to the interaction of adatoms on the neighbouring facets. Specifically, the difference in the effective chemical potential of Ge adatoms on the two neighbouring facets leads to the depletion of nano-islands on the {111} strip with width <500 nm under the growth condition used in this study
Terpenoids from the Octocorals Menella sp. (Plexauridae) and Lobophytum crassum (Alcyonacea)
A new germacrane-type sesquiterpenoid, menelloide E (1), and a new cembrane-type diterpenoid, lobocrassin F (2), were isolated from the octocorals Menella sp. and Lobophytum crassum, respectively. The structures of terpenoids 1 and 2 were determined by spectroscopic and chemical methods and compound 2 was found to display a significant inhibitory effect on the release of elastase by human neutrophils
Developments in nanoparticles for use in biosensors to assess food safety and quality
The following will provide an overview on how advances in nanoparticle technology have contributed towards developing biosensors to screen for safety and quality markers associated with foods. The novel properties of nanoparticles will be described and how such characteristics have been exploited in sensor design will be provided. All the biosensor formats were initially developed for the health care sector to meet the demand for point-of-care diagnostics. As a consequence, research has been directed towards miniaturization thereby reducing the sample volume to nanolitres. However, the needs of the food sector are very different which may ultimately limit commercial application of nanoparticle based nanosensors. Ă© 2014 Elsevier Ltd
Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability
RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA-binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the ârecombination mediatorsâ. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as ârecombination co-mediatorsâ. Defects in either recombination mediators or co-mediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic re-stabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51 expression
The 3âČ-Terminal Hexamer Sequence of Classical swine fever virus RNA Plays a Role in Negatively Regulating the IRES-Mediated Translation
The 3âČ untranslated region (UTR) is usually involved in the switch of the translation and replication for a positive-sense RNA virus. To understand the 3âČ UTR involved in an internal ribosome entry site (IRES)-mediated translation in Classical swine fever virus (CSFV), we first confirmed the predicted secondary structure (designated as SLI, SLII, SLIII, and SLIV) by enzymatic probing. Using a reporter assay in which the luciferase expression is under the control of CSFV 5âČ and 3âČ UTRs, we found that the 3âČ UTR harbors the positive and negative regulatory elements for translational control. Unlike other stem loops, SLI acts as a repressor for expression of the reporter gene. The negative cis-acting element in SLI is further mapped to the very 3âČ-end hexamer CGGCCC sequence. Further, the CSFV IRES-mediated translation can be enhanced by the heterologous 3âČ-ends such as the poly(A) or the 3âČ UTR of Hepatitis C virus (HCV). Interestingly, such an enhancement was repressed by flanking this hexamer to the end of poly(A) or HCV 3âČ UTR. After sequence comparison and alignment, we have found that this hexamer sequence could hypothetically base pair with the sequence in the IRES IIId1, the 40 S ribosomal subunit binding site for the translational initiation, located at the 5âČ UTR. In conclusion, we have found that the 3âČ-end terminal sequence can play a role in regulating the translation of CSFV
Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay
We reconstruct the rare decays , , and in a data sample
corresponding to collected in collisions at
by the CDF II detector at the Fermilab Tevatron
Collider. Using and decays we report the branching ratios. In addition, we report
the measurement of the differential branching ratio and the muon
forward-backward asymmetry in the and decay modes, and the
longitudinal polarization in the decay mode with respect to the squared
dimuon mass. These are consistent with the theoretical prediction from the
standard model, and most recent determinations from other experiments and of
comparable accuracy. We also report the first observation of the {\mathcal{B}}(B^0_s \to
\phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}27 \pm 6B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV
We present a search for a new heavy charged vector boson decaying
to an electron-neutrino pair in collisions at a center-of-mass
energy of 1.96\unit{TeV}. The data were collected with the CDF II detector
and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No
significant excess above the standard model expectation is observed and we set
upper limits on . Assuming standard
model couplings to fermions and the neutrino from the boson decay to
be light, we exclude a boson with mass less than
1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR
- âŠ