682 research outputs found

    Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process

    Get PDF
    This manuscript reports a new type of drug-loaded core-shell nanofibers that provide tunable biphasic release of quercetin. The nanofibers were fabricated using a modified coaxial electrospinning process, in which a polyvinyl chloride (PVC)-coated concentric spinneret was employed. Poly (vinyl pyrrolidone) (PVP) and ethyl cellulose (EC) were used as the polymer matrices to form the shell and core parts of the nanofibers, respectively. Scanning and transmission electron microscopy demonstrated that the nanofibers had linear morphologies and core-shell structures. The quercetin was found to be present in the nanofibers in the amorphous physical status, on the basis of X-ray diffraction results. In vitro release profiles showed that the PVP shell very rapidly freed its drug cargo into the solution, while the EC core provided the succedent sustained release. Variation of the drug loading permitted the release profiles to be tuned

    Web Usage Mining to Extract Knowledge for Modelling Users of Taiwan Travel Recommendation Mobile APP

    Get PDF
    This work presents the design of a web mining system to understand the navigational behavior of passengers in developed Taiwan travel recommendation mobile app that provides four main functions including recommend by location , hot topic , nearby scenic spots information , my favorite and 2650 scenic spots. To understand passenger navigational patterns, log data from actual cases of app were collected and analysed by web mining system. This system analysed 58981 sessions of 1326 users for the month of June, 2014. Sequential profiles for passenger navigational patterns were captured by applying sequence-based representation schemes in association with Markov models and enhanced K-mean clustering algorithms for sequence behavior mining cluster patterns. The navigational cycle, time, function numbers, and the depth and extent (range) of app were statistically analysed. The analysis results can be used improved the passengers\u27 acceptance of app and help generate potential personalization recommendations for achieving an intelligent travel recommendation service

    Co-Loading of Inorganic Nanoparticles and Natural Oil in the Electrospun Janus Nanofibers for a Synergetic Antibacterial Effect

    Get PDF
    Side-by-side electrospinning is a powerful but challenging technology that can be used to prepare Janus nanofibers for various applications. In this work, cellulose acetate (CA) and polycaprolactone (PCL) were used as polymer carriers for silver nanoparticles (Ag NPs) and lavender oil (LO), respectively, processing these into two-compartment Janus fibers. A bespoke spinneret was used to facilitate the process and prevent the separation of the working fluids. The process of side-by-side electrospinning was recorded with a digital camera, and the morphology and internal structure of the products were characterized by electron microscopy. Clear two-compartment fibers are seen. X-ray diffraction patterns demonstrate silver nanoparticles have been successfully loaded on the CA side, and infrared spectroscopy indicates LO is dispersed on the PCL side. Wetting ability and antibacterial properties of the fibers suggested that PCL-LO//CA-Ag NPs formulation had strong antibacterial activity, performing better than fibers containing only one active component. The PCL-LO//CA-Ag NPs had a 20.08 ± 0.63 mm inhibition zone for E. coli and 19.75 ± 0.96 mm for S. aureus. All the fibers had water contact angels all around 120°, and hence, have suitable hydrophobicity to prevent water ingress into a wound site. Overall, the materials prepared in this work have considerable promise for wound healing applications
    • …
    corecore