22,454 research outputs found
Aesthetic-Driven Image Enhancement by Adversarial Learning
We introduce EnhanceGAN, an adversarial learning based model that performs
automatic image enhancement. Traditional image enhancement frameworks typically
involve training models in a fully-supervised manner, which require expensive
annotations in the form of aligned image pairs. In contrast to these
approaches, our proposed EnhanceGAN only requires weak supervision (binary
labels on image aesthetic quality) and is able to learn enhancement operators
for the task of aesthetic-based image enhancement. In particular, we show the
effectiveness of a piecewise color enhancement module trained with weak
supervision, and extend the proposed EnhanceGAN framework to learning a deep
filtering-based aesthetic enhancer. The full differentiability of our image
enhancement operators enables the training of EnhanceGAN in an end-to-end
manner. We further demonstrate the capability of EnhanceGAN in learning
aesthetic-based image cropping without any groundtruth cropping pairs. Our
weakly-supervised EnhanceGAN reports competitive quantitative results on
aesthetic-based color enhancement as well as automatic image cropping, and a
user study confirms that our image enhancement results are on par with or even
preferred over professional enhancement
- …