40,019 research outputs found
Robust variable selection in partially varying coefficient single-index model
By combining basis function approximations and smoothly clipped absolute deviation (SCAD) penalty, this paper proposes a robust variable selection procedure for a partially varying coefficient single-index model based on modal regression. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. Furthermore, we also discuss the bandwidth selection and propose a modified expectation-maximization (EM)-type algorithm for the proposed estimation procedure. The finite sample properties of the proposed estimators are illustrated by some simulation examples.The research of Zhu is partially supported by National Natural Science Foundation of China (NNSFC) under Grants 71171075, 71221001 and 71031004. The research of Yu is supported by NNSFC under Grant 11261048
Nebular Spectra of SN 1998bw Revisited: Detailed Study by One and Two Dimensional Models
Refined one- and two-dimensional models for the nebular spectra of the
hyper-energetic Type Ic supernova (SN) 1998bw, associated with the gamma-ray
burst GRB980425, from 125 to 376 days after B-band maximum are presented. One
dimensional, spherically symmetric spectrum synthesis calculations show that
reproducing features in the observed spectra, i.e., the sharply peaked [OI]
6300\AA doublet and MgI] 4570\AA emission, and the broad [FeII] blend around
5200\AA, requires the existence of a high-density O-rich core expanding at low
velocities (\lsim 8,000 km s) and of Fe-rich material moving faster
than the O-rich material. Synthetic spectra at late phases from aspherical
(bipolar) explosion models are also computed with a two-dimensional spectrum
synthesis code. The above features are naturally explained by the aspherical
model if the explosion is viewed from a direction close to the axis of symmetry
(), since the aspherical model yields a high-density O-rich
region confined along the equatorial axis. By examining a large parameter space
(in energy and mass), our best model gives following physical quantities: the
kinetic energy ergs \gsim 8 - 12 and the
main-sequence mass of the progenitor star M_{\rm ms} \gsim 30 - 35 \Msun. The
temporal spectral evolution of SN 1998bw also indicates mixing among Fe-, O-,
and C-rich regions, and highly clumpy structure.Comment: 38 pages, 22 figures. ApJ, 640 (01 April 2006 issue), in pres
Simple scheme for two-qubit Grover search in cavity QED
Following the proposal by F. Yamaguchi et al.[Phys. Rev. A 66, 010302 (R)
(2002)], we present an alternative way to implement the two-qubit Grover search
algorithm in cavity QED. Compared with F. Yamaguchi et al.'s proposal, with a
strong resonant classical field added, our method is insensitive to both the
cavity decay and thermal field, and doesn't require that the cavity remain in
the vacuum state throughout the procedure. Moreover, the qubit definitions are
the same for both atoms, which makes the experiment easier. The strictly
numerical simulation shows that our proposal is good enough to demonstrate a
two-qubit Grover's search with high fidelity.Comment: manuscript 10 pages, 2 figures, to appear in Phys. Rev.
28 GHz and 73 GHz Millimeter-Wave Indoor Propagation Measurements and Path Loss Models
This paper presents 28 GHz and 73 GHz millimeter- wave propagation
measurements performed in a typical office environment using a 400
Megachip-per-second broadband sliding correlator channel sounder and highly
directional steerable 15 dBi (30 degrees beamwidth) and 20 dBi (15 degrees
beamwidth) horn antennas. Power delay profiles were acquired for 48
transmitter-receiver location combinations over distances ranging from 3.9 m to
45.9 m with maximum transmit powers of 24 dBm and 12.3 dBm at 28 GHz and 73
GHz, respectively. Directional and omnidirectional path loss models and RMS
delay spread statistics are presented for line-of-sight and non-line-of-sight
environments for both co- and cross-polarized antenna configurations. The LOS
omnidirectional path loss exponents were 1.1 and 1.3 at 28 GHz and 73 GHz, and
2.7 and 3.2 in NLOS at 28 GHz and 73 GHz, respectively, for
vertically-polarized antennas. The mean directional RMS delay spreads were 18.4
ns and 13.3 ns, with maximum values of 193 ns and 288 ns at 28 GHz and 73 GHz,
respectively.Comment: 7 pages, 9 figures, 2015 IEEE International Conference on
Communications (ICC), ICC Workshop
Entanglement production due to quench dynamics of an anisotropic XY chain in a transverse field
We compute concurrence and negativity as measures of two-site entanglement
generated by a power-law quench (characterized by a rate 1/tau and an exponent
alpha) which takes an anisotropic XY chain in a transverse field through a
quantum critical point (QCP). We show that only the even-neighbor pairs of
sites get entangled in such a process. Moreover, there is a critical rate of
quench, 1/tau_c, above which no two-site entanglement is generated; the entire
entanglement is multipartite. The ratio of the two-site entanglements between
consecutive even neighbors can be tuned by changing the quench rate. We also
show that for large tau, the concurrence (negativity) scales as sqrt{alpha/tau}
(alpha/tau), and we relate this scaling behavior to defect production by the
quench through a QCP.Comment: 5 pages including 4 figures; added a figure on multipartite
entanglement and some references -- this is the published versio
Jacobi-Predictor-Corrector Approach for the Fractional Ordinary Differential Equations
We present a novel numerical method, called {\tt Jacobi-predictor-corrector
approach}, for the numerical solution of fractional ordinary differential
equations based on the polynomial interpolation and the Gauss-Lobatto
quadrature w.r.t. the Jacobi-weight function
. This method has the computational cost
O(N) and the convergent order , where and are, respectively, the
total computational steps and the number of used interpolating points. The
detailed error analysis is performed, and the extensive numerical experiments
confirm the theoretical results and show the robustness of this method.Comment: 24 pages, 5 figure
- …