33,139 research outputs found

    Period halving of Persistent Currents in Mesoscopic Mobius ladders

    Full text link
    We investigate the period halving of persistent currents(PCs) of non-interacting electrons in isolated mesoscopic M\"{o}bius ladders without disorder, pierced by Aharonov-Bhom flux. The mechanisms of the period halving effect depend on the parity of the number of electrons as well as on the interchain hopping. Although the data of PCs in mesoscopic systems are sample-specific, some simple rules are found in the canonical ensemble average, such as all the odd harmonics of the PCs disappear, and the signals of even harmonics are non-negative. {PACS number(s): 73.23.Ra, 73.23.-b, 68.65.-k}Comment: 6 Pages with 3 EPS figure

    Superluminal propagation of an optical pulse in a Doppler broadened three-state, single channel active Raman gain medium

    Get PDF
    Using a single channel active Raman gain medium we show a (220±20)(220\pm 20)ns advance time for an optical pulse of τFWHM=15.4μ\tau_{FWHM}=15.4 \mus propagating through a 10 cm medium, a lead time that is comparable to what was reported previously. In addition, we have verified experimentally all the features associated with this single channel Raman gain system. Our results show that the reported gain-assisted superluminal propagation should not be attributed to the interference between the two frequencies of the pump field.Comment: 4 pages, 3 figure

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure

    Quantum secret sharing between m-party and n-party with six states

    Full text link
    We propose a quantum secret sharing scheme between mm-party and nn-party using three conjugate bases, i.e. six states. A sequence of single photons, each of which is prepared in one of the six states, is used directly to encode classical information in the quantum secret sharing process. In this scheme, each of all mm members in group 1 choose randomly their own secret key individually and independently, and then directly encode their respective secret information on the states of single photons via unitary operations, then the last one (the mmth member of group 1) sends 1/n1/n of the resulting qubits to each of group 2. By measuring their respective qubits, all members in group 2 share the secret information shared by all members in group 1. The secret message shared by group 1 and group 2 in such a way that neither subset of each group nor the union of a subset of group 1 and a subset of group 2 can extract the secret message, but each whole group (all the members of each group) can. The scheme is asymptotically 100% in efficiency. It makes the Trojan horse attack with a multi-photon signal, the fake-signal attack with EPR pairs, the attack with single photons, and the attack with invisible photons to be nullification. We show that it is secure and has an advantage over the one based on two conjugate bases. We also give the upper bounds of the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states. This protocol is feasible with present-day technique.Comment: 7 page

    Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage

    Get PDF
    A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.Comment: to appear in Phys. Rev.

    Efficient quantum cryptography network without entanglement and quantum memory

    Full text link
    An efficient quantum cryptography network protocol is proposed with d-dimension polarized photons, without resorting to entanglement and quantum memory. A server on the network, say Alice, provides the service for preparing and measuring single photons whose initial state are |0>. The users code the information on the single photons with some unitary operations. For preventing the untrustworthy server Alice from eavesdropping the quantum lines, a nonorthogonal-coding technique (decoy-photon technique) is used in the process that the quantum signal is transmitted between the users. This protocol does not require the servers and the users to store the quantum state and almost all of the single photons can be used for carrying the information, which makes it more convenient for application than others with present technology. We also discuss the case with a faint laser pulse.Comment: 4 pages, 1 figures. It also presented a way for preparing decoy photons without a sinigle-photon sourc

    Circular quantum secret sharing

    Full text link
    A circular quantum secret sharing protocol is proposed, which is useful and efficient when one of the parties of secret sharing is remote to the others who are in adjacent, especially the parties are more than three. We describe the process of this protocol and discuss its security when the quantum information carrying is polarized single photons running circularly. It will be shown that entanglement is not necessary for quantum secret sharing. Moreover, the theoretic efficiency is improved to approach 100% as almost all the instances can be used for generating the private key, and each photon can carry one bit of information without quantum storage. It is straightforwardly to utilize this topological structure to complete quantum secret sharing with multi-level two-particle entanglement in high capacity securely.Comment: 7 pages, 2 figure

    De Novo Genome Sequence of "Candidatus Liberibacter solanacearum" from a Single Potato Psyllid in California.

    Get PDF
    The draft genome sequence of "Candidatus Liberibacter solanacearum" strain RSTM from a potato psyllid (Bactericera cockerelli) in California is reported here. The RSTM strain has a genome size of 1,286,787 bp, a G+C content of 35.1%, 1,211 predicted open reading frames (ORFs), and 43 RNA genes
    • …
    corecore