15 research outputs found

    A Significantly High Abundance of “Candidatus Liberibacter asiaticus” in Citrus Fruit Pith: in planta Transcriptome and Anatomical Analyses

    Get PDF
    Huanglongbing, a highly destructive disease of citrus, is associated with the non-culturable phloem-limited α-proteobacterium “Candidatus Liberibacter asiaticus” (CLas). The distribution patterns of CLas in infected plant are variable and not consistent, which make the CLas detection and characterization more challenging. Here, we performed a systemic analysis of CLas distribution in citrus branches and fruits of 14 cultivars. A significantly high concentration of CLas was detected in fruit pith (dorsal vascular bundle) of 14 citrus cultivars collected at fruit maturity season. A 2-year monitoring assay of CLas population in citrus branches of “Shatangju” mandarin (Citrus reticulata Blanco “Shatangju”) revealed that CLas population already exhibited a high level even before the appearance of visual symptoms in the fruit rind. Quantitative analyses of CLas in serial 1.5-cm segments of fruit piths showed the CLas was unevenly distributed within fruit pith and tended to colonize in the middle or distal (stylar end) regions of pith. The use of CLas-abundant fruit pith for dual RNA-seq generated higher-resolution CLas transcriptome data compared with the leaf samples. CLas genes involved in transport system, flagellar assembly, lipopolysaccharide biosynthesis, virulence, stress response, and cell surface structure, as well as host genes involved in biosynthesis of antimicrobial-associated secondary metabolites, was up-regulated in leaf midribs compared with fruit pith. In addition, CLas infection caused the severe collapse in phloem and callose deposition in the plasmodesmata of fruit pith. The ability of fruit pith to support multiplication of CLas to high levels makes it an ideal host tissue for morphological studies and in planta transcriptome analyses of CLas–host interactions

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Identification of an autophagy-related gene signature for survival prediction in patients with cervical cancer

    No full text
    Abstract Cervical cancer is one of the most common female malignancy that occurs worldwide and is reported to cause over 300,000 deaths in 2018. Autophagy controls the survival and death of cancerous cells by regulating the degradation process of cytoplasm and cellular organelle. In the present study, the differentially expressed autophagy-related genes (ARGs) between healthy and cancerous cervical tissues (squamous cell neoplasms) were obtained using data from GTEx and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology (GO) as well as the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Next, we conducted univariate Cox regression assay and obtained 12 ARGs that were associated with the prognosis of cervical cancer patients. We carried out a multivariate Cox regression analysis and developed six ARG-related prognostic signature for the survival prediction of patients with squamous cell cervical cancer (Risk score = − 0.63*ATG3–0.42*BCL2 + 0.85*CD46–0.38*IFNG+ 0.23*NAMPT+ 0.82*TM9SF1). Following the calculation of risk score using the signature, the patients were divided into high and low-risk groups according to the median value. Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis (P < 0.001). The value for area under the curves corresponding to the receiver operating characteristic (ROC) was 0.740. As observed, the expression of IFNG was negatively associated with lymph node metastasis (P = 0.026), while a high-risk score was significantly associated with increased age (P = 0.008). To further validate the prognostic signature, we carried out a permutation test and confirmed the performance of the risk score. In conclusion, our study developed six ARG-related prognostic signature for patients with squamous cell cervical cancer, which might help in improving the prognostic predictions of such patients

    Investigations into wetting and spreading behaviors of impacting metal droplet under ultrasonic vibration control

    No full text
    Ultrasonic-assisted metal droplet deposition (UAMDD) is currently considered a promising technology in droplet-based 3D printing due to its capability to change the wetting and spreading behaviors at the droplet-substrate interface. However, the involved contact dynamics during impacting droplet deposition, particularly the complex physical interaction and metallurgical reaction of induced wetting-spreading-solidification by the external energy, remain unclear to date, which hinders the quantitative prediction and regulation of the microstructures and bonding property of the UAMDD bumps. Here, the wettability of the impacting metal droplet ejected by a piezoelectric micro-jet device (PMJD) on non-wetting and wetting ultrasonic vibration substrates is studied, and the corresponding spreading diameter, contact angle, and bonding strength are also discussed. For the non-wetting substrate, the wettability of the droplet can be significantly increased due to the extrusion of the vibration substrate and the momentum transfer layer at the droplet-substrate interface. And the wettability of the droplet on a wetting substrate is increased at a lower vibration amplitude, which is driven by the momentum transfer layer and the capillary waves at the liquid–vapor interface. Moreover, the effects of the ultrasonic amplitude on the droplet spreading are studied under the resonant frequency of 18.2–18.4 kHz. Compared to deposit droplets on a static substrate, such UAMDD has 31% and 2.1% increments in the spreading diameters for the non-wetting and wetting systems, and the corresponding adhesion tangential forces are increased by 3.85 and 5.59 times

    Determination of the Protein-Protein Interactions within Acyl Carrier Protein (MmcB)-Dependent Modifications in the Biosynthesis of Mitomycin

    No full text
    Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein–protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein–protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein–protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics

    Determination of the Protein-Protein Interactions within Acyl Carrier Protein (MmcB)-Dependent Modifications in the Biosynthesis of Mitomycin

    No full text
    Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein–protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein–protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein–protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics

    Investigations of generalized Pancharatnam-Berry phase in all-dielectric metasurfaces

    No full text
    As one of the main approaches to implement phase gradient in metasurfaces, Pancharatnam-Berry (PB) phase originated from the spin–orbit interaction (SOI) of light has attracted enormous interest during the past several decades. Different from classical PB phase in linear optics that equals to twice the rotational angle of anisotropic elements for half wave plate distance and circular polarization, the recently proposed generalized PB phase indicates that phase gradient equals to multiple times the rotation angle could be achieved by high-order symmetry metallic meta atoms. Here, we show that the generalized PB phase can also be implemented in all-dielectric metasurfaces with higher efficiency than their metallic counterparts. Besides, by merging generalized PB phase and propagation phase, several functional devices are designed that the symmetric performance of PB phase can be decoupled. Moreover, a detailed comparison between meta atoms with C2, C3, and C6 rotational symmetries is conducted to illustrate the difference between classical and generalized PB phase. These results may further supplement the concept of generalized PB phase and could find many applications in optics and photonics.

    Combating increased antifungal drug resistance in Cryptococcus, what should we do in the future?

    No full text
    Few therapeutic drugs and increased drug resistance have aggravated the current treatment difficulties of Cryptococcus in recent years. To better understand the antifungal drug resistance mechanism and treatment strategy of cryptococcosis. In this review, by combining the fundamental features of Cryptococcus reproduction leading to changes in its genome, we review recent research into the mechanism of four current anti-cryptococcal agents, coupled with new therapeutic strategies and the application of advanced technologies WGS and CRISPR-Cas9 in this field, hoping to provide a broad idea for the future clinical therapy of cryptococcosis

    p-Aminophenylalanine Involved in the Biosynthesis of Antitumor Dnacin B1 for Quinone Moiety Formation

    No full text
    Actinosynnema species produce diverse natural products with important biological activities, which represent an important resource of antibiotic discovery. Advances in genome sequencing and bioinformatics tools have accelerated the exploration of the biosynthetic gene clusters (BGCs) encoding natural products. Herein, the completed BGCs of dnacin B1 were first discovered in two Actinosynnema pretiosum subsp. auranticum strains DSM 44131T (hereafter abbreviated as strain DSM 44131T) and X47 by comparative genome mining strategy. The BGC for dnacin B1 contains 41 ORFs and spans a 66.9 kb DNA region in strain DSM 44131T. Its involvement in dnacin B1 biosynthesis was identified through the deletion of a 9.7 kb region. Based on the functional gene analysis, we proposed the biosynthetic pathway for dnacin B1. Moreover, p-amino-phenylalanine (PAPA) unit was found to be the dnacin B1 precursor for the quinone moiety formation, and this was confirmed by heterologous expression of dinV, dinE and dinF in Escherichia coli. Furthermore, nine potential PAPA aminotransferases (APAT) from the genome of strain DSM 44131T were explored and expressed. Biochemical evaluation of their amino group transformation ability was carried out with p-amino-phenylpyruvic acid (PAPP) or PAPA as the substrate for the final product formation. Two of those, APAT4 and APAT9, displayed intriguing aminotransferase ability for the formation of PAPA. The proposed dnacin B1 biosynthetic machinery and PAPA biosynthetic investigations not only enriched the knowledge of tetrahydroisoquinoline (THIQ) biosynthesis, but also provided PAPA building blocks to generate their structurally unique homologues

    Insertion sequence transposition inactivates CRISPR-Cas immunity

    No full text
    Abstract CRISPR-Cas immunity systems safeguard prokaryotic genomes by inhibiting the invasion of mobile genetic elements. Here, we screened prokaryotic genomic sequences and identified multiple natural transpositions of insertion sequences (ISs) into cas genes, thus inactivating CRISPR-Cas defenses. We then generated an IS-trapping system, using Escherichia coli strains with various ISs and an inducible cas nuclease, to monitor IS insertions into cas genes following the induction of double-strand DNA breakage as a physiological host stress. We identified multiple events mediated by different ISs, especially IS1 and IS10, displaying substantial relaxed target specificity. IS transposition into cas was maintained in the presence of DNA repair machinery, and transposition into other host defense systems was also detected. Our findings highlight the potential of ISs to counter CRISPR activity, thus increasing bacterial susceptibility to foreign DNA invasion
    corecore