509 research outputs found

    Retinoic acid synthesis and functions in early embryonic development

    Get PDF
    Retinoic acid (RA) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development

    Heritable and Lineage-Specific Gene Knockdown in Zebrafish Embryo

    Get PDF
    BACKGROUND: Reduced expression of developmentally important genes and tumor suppressors due to haploinsufficiency or epigenetic suppression has been shown to contribute to the pathogenesis of various malignancies. However, methodology that allows spatio-temporally knockdown of gene expression in various model organisms such as zebrafish has not been well established, which largely limits the potential of zebrafish as a vertebrate model of human malignant disorders. PRINCIPAL FINDING: Here, we report that multiple copies of small hairpin RNA (shRNA) are expressed from a single transcript that mimics the natural microRNA-30e precursor (mir-shRNA). The mir-shRNA, when microinjected into zebrafish embryos, induced an efficient knockdown of two developmentally essential genes chordin and alpha-catenin in a dose-controllable fashion. Furthermore, we designed a novel cassette vector to simultaneously express an intronic mir-shRNA and a chimeric red fluorescent protein driven by lineage-specific promoter, which efficiently reduced the expression of a chromosomally integrated reporter gene and an endogenously expressed gata-1 gene in the developing erythroid progenitors and hemangioblasts, respectively. SIGNIFICANCE: This methodology provides an invaluable tool to knockdown developmental important genes in a tissue-specific manner or to establish animal models, in which the gene dosage is critically important in the pathogenesis of human disorders. The strategy should be also applicable to other model organisms

    Discovering multiple transcripts of human hepatocytes using massively parallel signature sequencing (MPSS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The liver is the largest human internal organ – it is composed of multiple cell types and plays a vital role in fulfilling the body's metabolic needs and maintaining homeostasis. Of these cell types the hepatocytes, which account for three-quarters of the liver's volume, perform its main functions. To discover the molecular basis of hepatocyte function, we employed Massively Parallel Signature Sequencing (MPSS) to determine the transcriptomic profile of adult human hepatocytes obtained by laser capture microdissection (LCM).</p> <p>Results</p> <p>10,279 UniGene clusters, representing 7,475 known genes, were detected in human hepatocytes. In addition, 1,819 unique MPSS signatures matching the antisense strand of 1,605 non-redundant UniGene clusters (such as <it>APOC1</it>, <it>APOC2</it>, <it>APOB </it>and <it>APOH</it>) were highly expressed in hepatocytes.</p> <p>Conclusion</p> <p>Apart from a large number of protein-coding genes, some of the antisense transcripts expressed in hepatocytes could play important roles in transcriptional interference via a <it>cis</it>-/<it>trans</it>-regulation mechanism. Our result provided a comprehensively transcriptomic atlas of human hepatocytes using MPSS technique, which could be served as an available resource for an in-depth understanding of human liver biology and diseases.</p

    Inhibitory effects of armepavine against hepatic fibrosis in rats

    Get PDF
    Activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrogenesis. armepavine (Arm, C19H23O3N), an active compound from Nelumbo nucifera, has been shown to exert immunosuppressive effects on T lymphocytes and on lupus nephritic mice. The aim of this study was to investigate whether Arm could exert anti-hepatic fibrogenic effects in vitro and in vivo. A cell line of rat HSCs (HSC-T6) was stimulated with tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS) to evaluate the inhibitory effects of Arm. An in vivo therapeutic study was conducted in bile duct-ligated (BDL) rats. BDL rats were given Arm (3 or 10 mg/kg) by gavage twice daily for 3 weeks starting from the onset of BDL. Liver sections were taken for fibrosis scoring, immuno-fluorescence staining and quantitative real-time mRNA measurements. In vitro, Arm (1-10 μM) concentration-dependently attenuated TNF-α- and LPS-stimulated α-SMA protein expression and AP-1 activation by HSC-T6 cells without adverse cytotoxicity. Arm also suppressed TNF-α-induced collagen collagen deposition, NFκB activation and MAPK (p38, ERK1/2, and JNK) phosphorylations. In vivo, Arm treatment significantly reduced plasma AST and ALT levels, hepatic α-SMA expression and collagen contents, and fibrosis scores of BDL rats as compared with vehicle treatment. Moreover, Arm attenuated the mRNA expression levels of col 1α2, TGF-β1, TIMP-1, ICAM-1, iNOS, and IL-6 genes, but up-regulated metallothionein genes. Our study results showed that Arm exerted both in vitro and in vivo antifibrotic effects in rats, possibly through anti-NF-κB activation pathways
    corecore