51 research outputs found

    Dysregulation of Bile Acids in Patients with NAFLD

    Get PDF
    Bile acids are synthesized in the liver and tightly regulated through the enterohepatic circulation. Recent studies reveal that bile acids serve as hormone-like signaling molecules to activate nuclear receptors, notably farnesoid X receptor (FXR), regulating metabolic homeostasis of bile acids, cholesterol, lipids, and glucose. A connection between bile acids and nonalcoholic fatty liver disease (NAFLD) has long been recognized. Although inconsistent or even contradictory results are reported, a large body of evidence from clinical as well as preclinical studies demonstrates that bile acid homeostasis is disrupted in patients with NAFLD. The bile acid dysregulation gets worsening as NAFLD progresses from early stage simple steatosis to late stage nonalcoholic steatohepatitis (NASH) and NASH with fibrosis. As the risk factors for NAFLD, obesity and insulin resistance, which are often associated with NAFLD, contribute to the dysregulation of bile acids in patients with NAFLD. Total serum and fecal bile acid concentrations are mostly elevated in patients with NAFLD as a result of increased bile acid synthesis, elevated hepatic bile acids, and upregulation of bile acid transporters. The two negative feedback regulatory pathways for bile acid synthesis, FXR/SHP (small heterodimer partner) and fibroblast growth factor-19 (FGF19)/FGF receptor-4 (FGFR4), are impaired in patients with NAFLD

    Introduction to Common Molecular Biological Techniques Used in Research Laboratories

    Get PDF
    The main techniques used in molecular biology are cloning, PCR (Polymerase Chain Reaction), nucleic acid electrophoresis, DNA microarray analysis, in situ hybridization (HIS), sequencing (Sanger or Next Generation Sequencing (NGS)). Molecular biology techniques are extremely valuable for addressing a wide range of issues impacting the general state of humanity, in addition to investigating fundamental scientific concerns. Applications for molecular biology techniques include the prevention and treatment of disease, the creation of new protein products, and the modification of plants and animals to produce desired phenotypic traits

    Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression

    Get PDF
    The metabolic conversion of cholesterol into bile acids in liver is initiated by the rate-limiting cholesterol 7α-hydroxylase (CYP7A1), whereas the bile salt export pump (BSEP) is responsible for the canalicular secretion of bile acids. Liver receptor homolog 1 (LRH-1) is a key transcriptional factor required for the hepatic expression of CYP7A1. We hypothesized that LRH-1 was also involved in the transcriptional regulation of BSEP. In support of our hypothesis, we found that overexpression of LRH-1 induced, whereas knockdown of LRH-1 decreased, BSEP expression. Consistent with its role in transcriptional regulation, LRH-1 dose-dependently transactivated the BSEP promoter. In addition, such transactivation by LRH-1 was required for maximal induction of BSEP expression through the bile acid/farnesoid X receptor (FXR) activation pathway. Bioinformatic and mutational analysis led to the identification of a functional liver receptor homolog 1-responsive element (LRHRE) in the BSEP promoter. Specific binding of LRH-1 to the LRHRE and recruitment of LRH-1 to the BSEP promoter were demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay, respectively. In conclusion, LRH-1 transcriptionally activated the BSEP promoter and functioned as a modulator in bile acid/FXR-mediated BSEP regulation. These results suggest that LRH-1 plays a supporting role to FXR in maintaining hepatic bile acid levels by coordinately regulating CYP7A1 and BSEP for bile acid synthesis and elimination, respectively

    Site-directed mutagenesis of a conserved hexapeptide in the paramyxovirus hemagglutinin-neuraminidase glycoprotein: effects on antigenic structure and function

    Get PDF
    The sequence NRKSCS constitutes the longest linear stretch in the amino acid sequence of the hemagglutinin-neuraminidase (HN) glycoprotein of the paramyxoviruses that is completely conserved among all viruses in the group. We have used site-directed mutagenesis and expression of the mutated HN protein of one member of the group, Newcastle disease virus, to explore the role of this highly conserved sequence in the structure and function of the protein. Any substitution introduced for each of four residues in the sequence, N-234, R-235, K-236, or S-237, results in a drastic decrease in neuraminidase activity relative to that of the wild-type protein. Only substitutions for the terminal serine residue in the sequence had comparatively little effect on this activity. These findings are consistent with prior computer-based predictions of protein secondary structure which had suggested that this domain corresponds to one in the beta-sheet propeller structure of the neuraminidase protein of influenza virus closest to the center of the sialic acid binding site and forms part of the enzyme active site. Four of the substitutions, N-234--\u3eY and K-236--\u3eE, --\u3eQ, and --\u3eS, apparently cause a local alteration in the antigenic structure of the protein. This is evidenced by (i) the diminished recognition of the protein only by monoclonal antibodies thought to bind at the neuraminidase active site, among an extensive panel of conformation-specific antibodies, and (ii) the slower rate of migration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis for all except the K-236--\u3eQ mutation. One of the mutations, K-236--\u3eS, completely abolishes the ability of the protein to promote cellular fusion when coexpressed with the fusion protein. The latter cannot be explained by a decrease in the relative hemadsorption activity of the protein and suggests that the globular head of the protein may contribute to this process beyond providing receptor recognition

    Pyrethroid insecticides: Isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor

    Get PDF
    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity

    Differential Feedback Regulation of Δ\u3csup\u3e4\u3c/sup\u3e-3- Oxosteroid 5β-Reductase Expression by Bile Acids

    Get PDF
    Δ4-3-oxosteroid 5β-reductase is member D1 of the aldo-keto reductase family 1 (AKR1D1), which catalyzes 5β-reduction of molecules with a 3-oxo-4-ene structure. Bile acid intermediates and most of the steroid hormones carry the 3-oxo-4-ene structure. Therefore, AKR1D1 plays critical roles in both bile acid synthesis and steroid hormone metabolism. Currently our understanding on transcriptional regulation of AKR1D1 under physiological and pathological conditions is very limited. In this study, we investigated the regulatory effects of primary bile acids, chenodeoxycholic acid (CDCA) and cholic acid (CA), on AKR1D1 expression. The expression levels of AKR1D1 mRNA and protein in vitro and in vivo following bile acid treatments were determined by real-time PCR and Western blotting. We found that CDCA markedly repressed AKR1D1 expression in vitro in human hepatoma HepG2 cells and in vivo in mice. On the contrary, CA significantly upregulated AKR1D1 expression in HepG2 cells and in mice. Further mechanistic investigations revealed that the farnesoid x receptor (FXR) signaling pathway was not involved in regulating AKR1D1 by bile acids. Instead, CDCA and CA regulated AKR1D1 through the mitogen-activated protein kinases/c-Jun N-terminal kinases (MAPK/JNK) signaling pathway. Inhibition of the MAPK/JNK pathway effectively abolished CDCA and CA-mediated regulation of AKR1D1. It was thus determined that AKR1D1 expression was regulated by CDCA and CA through modulating the MAPK/JNK signaling pathway. In conclusion, AKR1D1 expression was differentially regulated by primary bile acids through negative and positive feedback mechanisms. The findings indicated that both bile acid concentrations and compositions play important roles in regulating AKR1D1 expression, and consequently bile acid synthesis and steroid hormone metabolism

    Low-dose chemotherapy of hepatocellular carcinoma through triggered-release from bilayer-decorated magnetoliposomes

    Get PDF
    Low-dose (LD) chemotherapy is a promising treatment strategy that may be improved by controlled delivery. Polyethylene glycol-stabilized bilayer-decorated magnetoliposomes (dMLs) have been designed as a stimuli-responsive LD chemotherapy drug delivery system and tested in vitro using Huh-7 hepatocellular carcinoma cell line. The dMLs contained hydrophobic superparamagnetic iron oxide nanoparticles within the lipid bilayer and doxorubicin hydrochloride (DOX, 2 μM) within the aqueous core. Structural analysis by cryogenic transmission electron microscopy and dynamic light scattering showed that the assemblies were approximately 120 nm in diameter. Furthermore, the samples consisted of a mixture of dMLs and bare liposomes (no nanoparticles), which provided dual burst and spontaneous DOX release profiles, respectively. Cell viability results show that the cytotoxicity of DOX-loaded dMLs was similar to that of bare dMLs (∼10%), which indicates that spontaneous DOX leakage had little cytotoxic effect. However, when subjected to a physiologically acceptable radiofrequency (RF) electromagnetic field, cell viability was reduced up to 40% after 8 h and significant cell death (\u3e90%) was observed after 24 h. The therapeutic mechanism was intracellular RF-triggered DOX release from the dMLs and not intracellular hyperthermia due to nanoparticle heating via magnetic losses. [Refer to PDF for graphical abstract

    Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor

    Get PDF
    Expression of bile salt export pump (BSEP) is regulated by the bile acid/farnesoid X receptor (FXR) signaling pathway. Two FXR isoforms, FXRα1 and FXRα2, are predominantly expressed in human liver. We previously showed that human BSEP was isoform-dependently regulated by FXR and diminished with altered expression of FXRα1 and FXRα2 in patients with hepatocellular carcinoma. In this study, we demonstrate that FXRα1 and FXRα2 regulate human BSEP through two distinct FXR responsive elements (FXRE): IR1a and IR1b. As the predominant regulator, FXRα2 potently transactivated human BSEP through IR1a, while FXRα1 weakly transactivated human BSEP through a newly identified IR1b. Relative expression of FXRα1 and FXRα2 affected human BSEP expression in vitro and in vivo. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the binding and recruitment of FXRα1 and FXRα2 to IR1b and IR1a. Sequence analysis concluded that IR1b was completely conserved among species, whereas IR1a exhibited apparent differences across species. Sequence variations in IR1a were responsible for the observed species difference in BSEP transactivation by FXRα1 and FXRα2. In conclusion, FXR regulates BSEP in an isoform-dependent and species-specific manner through two distinct FXREs, and alteration of relative FXR isoform expression may be a potential mechanism for FXR to precisely regulate human BSEP in response to various physiological and pathological conditions

    Chiral cationic polyamines for chiral microcapsules and siRNA delivery

    Get PDF
    Reported herein is the use of chiral cationic polyamines for two intriguing applications: fabrication of chiral covalently-linked microcapsules, and enantiospecific delivery of siRNA to Huh 7 cells. The microcapsules are easily fabricated from homochiral polymers, and the resulting architectures can be used for supramolecular chiral catalysis and many other potential applications. Enantiospecific delivery of siRNA to Huh 7 cells is seen by one ‘enantiomer’ of the polymers delivering siRNA with significantly improved transfection efficiency and reduced toxicity compared to the ‘enantiomeric’ polymer and commercially available transfection reagents. Taken together, the use of these easily accessible polyamine structures for diverse applications is highlighted in this Letter herein and can lead to numerous future research efforts. [Refer to PDF for graphical abstract
    • …
    corecore