59 research outputs found

    Nickel(II) Dithiocarbamate Complexes Containing Sulforhodamine B as Fluorescent Probes for Selective Detection of Nitrogen Dioxide

    Get PDF
    We synthesized the Ni(II) complexes with dithiocarbamate ligand derived from ortho and para isomers sulforhodamine B fluorophores and demonstrated they are highly selective in reaction with nitrogen dioxide (NO2). Comparing to the para isomer, the ortho isomer showed much greater fluorescence increase upon reaction with nitrogen dioxide, which led to oxidation and de-complexation of dithiocarbamate ligand from Ni(II). We applied this probe for visual detection of 1 ppm nitrogen dioxide in gas phase and fluorescence imaging of NO2 in macrophage cells treated with nitrogen oxide donor

    The Slow-Releasing Hydrogen Sulfide Donor, GYY4137, Exhibits Novel Anti-Cancer Effects In Vitro and In Vivo

    Get PDF
    The slow-releasing hydrogen sulfide (H2S) donor, GYY4137, caused concentration-dependent killing of seven different human cancer cell lines (HeLa, HCT-116, Hep G2, HL-60, MCF-7, MV4-11 and U2OS) but did not affect survival of normal human lung fibroblasts (IMR90, WI-38) as determined by trypan blue exclusion. Sodium hydrosulfide (NaHS) was less potent and not active in all cell lines. A structural analogue of GYY4137 (ZYJ1122) lacking sulfur and thence not able to release H2S was inactive. Similar results were obtained using a clonogenic assay. Incubation of GYY4137 (400 µM) in culture medium led to the generation of low (<20 µM) concentrations of H2S sustained over 7 days. In contrast, incubation of NaHS (400 µM) in the same way led to much higher (up to 400 µM) concentrations of H2S which persisted for only 1 hour. Mechanistic studies revealed that GYY4137 (400 µM) incubated for 5 days with MCF-7 but not IMR90 cells caused the generation of cleaved PARP and cleaved caspase 9, indicative of a pro-apoptotic effect. GYY4137 (but not ZYJ1122) also caused partial G2/M arrest of these cells. Mice xenograft studies using HL-60 and MV4-11 cells showed that GYY4137 (100–300 mg/kg/day for 14 days) significantly reduced tumor growth. We conclude that GYY4137 exhibits anti-cancer activity by releasing H2S over a period of days. We also propose that a combination of apoptosis and cell cycle arrest contributes to this effect and that H2S donors should be investigated further as potential anti-cancer agents

    Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy

    Get PDF
    Khattar, E., Maung, K.Z.Y., Chew, C.L. et al. Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy. Nat Commun 10, 5349 (2019). https://doi.org/10.1038/s41467-019-13082-

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer

    No full text
    10.3390/cells12060926CELLS12

    MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1

    No full text
    10.1083/jcb.201501021JOURNAL OF CELL BIOLOGY2127829-843United State

    Uniquely Conformed Peptide-Containing β 2

    No full text

    Intracellular Hyper-Acidification Potentiated by Hydrogen Sulfide Mediates Invasive and Therapy Resistant Cancer Cell Death

    No full text
    Slow and continuous release of H2S by GYY4137 has previously been demonstrated to kill cancer cells by increasing glycolysis and impairing anion exchanger and sodium/proton exchanger activity. This action is specific for cancer cells. The resulting lactate overproduction and defective pH homeostasis bring about intracellular acidification-induced cancer cell death. The present study investigated the potency of H2S released by GYY4137 against invasive and radio- as well as chemo-resistant cancers, known to be glycolytically active. We characterized and utilized cancer cell line pairs of various organ origins, based on their aggressive behaviors, and assessed their response to GYY4137. We compared glycolytic activity, via lactate production, and intracellular pH of each cancer cell line pair after exposure to H2S. Invasive and therapy resistant cancers, collectively termed aggressive cancers, are receptive to H2S-mediated cytotoxicity, albeit at a higher concentration of GYY4137 donor. While lactate production was enhanced, intracellular pH of aggressive cancers was only modestly decreased. Inherently, the magnitude of intracellular pH decrease is a key determinant for cancer cell sensitivity to H2S. We demonstrated the utility of coupling GYY4137 with either simvastatin, known to inhibit monocarboxylate transporter 4 (MCT4), or metformin, to further boost glycolysis, in bringing about cell death for aggressive cancers. Simvastatin inhibiting lactate extrusion thence contained excess lactate induced by GYY4137 within intracellular compartment. In contrast, the combined exposure to both GYY4137 and metformin overwhelms cancer cells with lactate over-production exceeding its expulsion rate. Together, GYY4137 and simvastatin or metformin synergize to induce intracellular hyper-acidification-mediated cancer cell death
    corecore