94 research outputs found

    A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    No full text
    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm−3∙g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads

    Cell Transplantation for Spinal Cord Injury: Tumorigenicity of Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cells

    No full text
    Spinal cord injury (SCI) is an intractable and worldwide difficult medical challenge with limited treatments. Neural stem/progenitor cell (NS/PC) transplantation derived from fetal tissues or embryonic stem cells (ESCs) has demonstrated therapeutic effects via replacement of lost neurons and severed axons and creation of permissive microenvironment to promote repair of spinal cord and axon regeneration but causes ethnical concerns and immunological rejections as well. Thus, the implementation of induced pluripotent stem cells (iPSCs), which can be generated from adult somatic cells and differentiated into NS/PCs, provides an effective alternation in the treatment of SCI. However, as researches further deepen, there is accumulating evidence that the use of iPSC-derived NS/PCs shows mounting concerns of safety, especially the tumorigenicity. This review discusses the tumorigenicity of iPSC-derived NS/PCs focusing on the two different routes of tumorigenicity (teratomas and true tumors) and underlying mechanisms behind them, as well as possible solutions to circumvent them

    Enhanced Quarter Spherical Acoustic Energy Harvester Based on Dual Helmholtz Resonators

    No full text
    An enhanced quarter-spherical acoustic energy harvester (AEH) with dual Helmholtz resonators was designed in this work. Compared with the previous research, this AEH can harvest multi-directional acoustic energy, has a widened resonance frequency band, and has an improved energy conversion efficiency. When the length of resonator’s neck is changed, the acoustic resonant frequency of the two resonators is different. The theoretical models of output voltage and output power were studied, and the relationship of output performance with frequency was obtained. The results showed that this AEH can operate efficiently in a frequency band of about 470 Hz. Its output voltage was found to be about 28 mV, and its output power was found to be about 0.05 μW. The power density of this AEH was found to be about 12.7 µW/cm2. Therefore, this AEH could be widely used in implantable medical devices such as implantable cardiac pacemakers, cochlear implants, and retinal prosthesis

    Exosome-Mediated Genetic Information Transfer, a Missing Piece of Osteoblast–Osteoclast Communication Puzzle

    No full text
    The skeletal system functions and maintains itself based on communication between cells of diverse origins, especially between osteoblasts (OBs) and osteoclasts (OCs), accounting for bone formation and resorption, respectively. Previously, protein-level information exchange has been the research focus, and this has been discussed in detail. The regulative effects of microRNAs (miRNAs) on OB and OC ignite the question as to whether genetic information could be transferred between bone cells. Exosomes, extracellular membrane vesicles 30–100 nm in diameter, have recently been demonstrated to transfer functional proteins, mRNAs, and miRNAs, and serve as mediators of intercellular communication. By reviewing the distinguishing features of exosomes, a hypothesis was formulated and evaluated in this article that exosome-mediated genetic information transfer may represent a novel strategy for OB–OC communication. The exosomes may coordinately regulate these two cells under certain physiological conditions by transferring genetic information. Further research in exosome-shuttered miRNAs in OB–OC communication may add a missing piece to the bone cells communication “puzzle.

    Research on Frequency Doubling Effect of Thermoacoustic Speaker Based on Graphene Film

    No full text
    In this work, the frequency doubling effect of thermoacoustic speakers is studied, and a method is analyzed to suppress the frequency doubling effect. Three cases were analyzed by superimposing the DC bias on the AC excitation: (1) DC is less than AC; (2) DC is equal to AC; (3) DC is greater than AC. We found that the frequency doubling effect can be well suppressed by superimposing a larger DC excitation on the AC excitation. The laser scribing technology was used to prepare graphene film in only one step, and the screen printing technology was used to prepare conductive electrodes. The microphone and B&K system was used to record the sound pressure level and study the suppression of frequency doubling effect. Finally, the sound pressure levels with the three different kinds of excitations were measured. The measured results show that they have a good agreement with the theoretical results. The suppression effect will be better when DC amplitude is greater than AC amplitude. Therefore, this work has certain reference significance for the further study and application of thermoacoustic speakers

    Pyroelectric property of SrTiO3/Si ferroelectric-semiconductor heterojunctions near room temperature

    No full text
    A nonlinear thermodynamic formalism is developed to calculate the pyroelectric property of epitaxial single domain SrTiO3∕Si heterojunctions by taking into account the thermal expansion misfit strain at different temperatures. It has been demonstrated that the crucial role was played by the contribution associated with the structure order parameter arising from the rotations of oxygen octahedral on pyroelectricity. A dramatic decrease in the pyroelectric coefficient due to the strong coupling between the polarization and the structure order parameter is found at ferroelectric TF1–TF2 phase transition. At the same time, the thermal expansion mismatch between film and substrate is also found to provide an additional weak decrease of pyroelectricity. The analytic relationship of the out-of-plane pyroelectric coefficient and dielectric constant of ferroelectric phases by considering the thermal expansion of thin films and substrates has been determined for the first time. Our research provides another avenue for the investigation of the pyroelectric effects of ferroic thin films, especially, such as antiferroelectric and multiferroic materials having two or more order parameters

    Femoral nonunion with segmental bone defect treated by distraction osteogenesis with monolateral external fixation

    No full text
    Abstract Background Currently, the common treatment for femoral nonunion with large segmental bone defect is difficult and complex. The effective surgical methods are rare, include vascularized bone grafting, Masquelet technique and Ilizarov distraction osteogenesis. The objective of this study is to investigate the outcomes of segmental femoral defects treated with monolateral external fixation using the distraction osteogenesis. Methods We retrospectively analyzed patients with femoral nonunion with segmental bone defects (> 6 cm) between January 2010 and January 2014 in our single trauma center. All patients were treated by distraction osteogenesis with monolateral external fixation. All surgeries were performed by the same surgeon. Bone union, duration of distraction osteogenesis in days, time to consolidation in months, external fixation index (EFI), complications, and additional surgical interventions were recorded postoperatively. The modified Application of Methods of Illizarov (ASAMI) criteria were used to evaluate the operative effectiveness. Results Forty-one patients were enrolled in this study for analysis. The length of the bone defect ranged from 6 to 17 cm. All patients eventually achieved healing, and no patient experienced recurrence of infection or newly developed infection. The average time needed for healing was 13 months. In terms of the incidence of complications, 3 cases axial deviations, 5 cases docking site nonunion, 23 cases pin-tract infection, 14 cases knee joint stiffness or their joint mobility declined, 2 cases osteogenesis insufficient in the distraction area,1 case refracture, and 2 cases loose external fixation pins. In terms of the evaluations of fracture healing and function, 30 patients excellent, 6 patients good, 5 patients fair, and 0 patient poor. In terms of postoperative function evaluations, 21 patients excellent, 9 patients good, 7 patients fair, and 4 patients poor. Conclusion For patients with femoral nonunion with large segmental bone defects, the monolateral external fixation can provide effective stability, improve compliance, and reduce complications

    Comparison between Novel Anatomical Locking Guide Plate and Conventional Locking Plate for Acetabular Fractures: A Finite Element Analysis

    No full text
    The treatment of complex acetabular fractures remains a complicated clinical challenge. Our self-designed novel anatomical locking guide plate (NALGP) has previously shown promising potential in T-shaped acetabular fractures (TAF), but a direct comparison with conventional fixations is yet to be made. The TAF model was established based on a volunteer’s computer tomography data and then fixed with double column locking plates (DLP), a posterior column locking plate with anterior column screws (LPACS), and our NALGP. Forces of 200 N, 400 N, and 600 N were then loaded on the model vertically downward, respectively. The stress distribution and peaks and maximum displacements at three sites were assessed. We found that the stress area of all three plates was mainly concentrated around the fracture line, while only the matching screws of the NALGP showed no obvious stress concentration points. In addition, the NALGP and DLP showed significantly less fracture fragment displacement than the LPACS at the three main fracture sites. The NALGP was found to have less displacement than DLP at the posterior column and ischiopubic branch sites, especially under the higher loading forces of 400 N and 600 N. The fixation stability of the NALGP for TAF was similar to that of DLP but better than that of LPACS. Moreover, the NALGP and its matching screws have a more reasonable stress distribution under different loads of force and the same strength as the LPACS
    • …
    corecore