109 research outputs found

    Cost Effectiveness of a CYP2C19 Genotype-Guided Strategy in Patients with Acute Myocardial Infarction:Results from the POPular Genetics Trial

    Get PDF
    INTRODUCTION: The POPular Genetics trial demonstrated that a CYP2C19 genotype-guided P2Y12 inhibitor strategy reduced bleeding rates compared with standard treatment with ticagrelor or prasugrel without increasing thrombotic event rates after primary percutaneous coronary intervention (PCI). OBJECTIVE: In this analysis, we aimed to evaluate the cost effectiveness of a genotype-guided strategy compared with standard treatment with ticagrelor or prasugrel. METHODS: A 1-year decision tree based on the POPular Genetics trial in combination with a lifelong Markov model was developed to compare costs and quality-adjusted life-years (QALYs) between a genotype-guided and a standard P2Y12 inhibitor strategy in patients with myocardial infarction undergoing primary PCI. The cost-effectiveness analysis was conducted from a Dutch healthcare system perspective. Within-trial survival and utility data were combined with lifetime projections to evaluate lifetime cost effectiveness for a cohort of 1000 patients. Costs and utilities were discounted at 4 and 1.5%, respectively, according to Dutch guidelines for health economic studies. Besides deterministic and probabilistic sensitivity analyses, several scenario analyses were also conducted (different time horizons, different discount rates, equal prices for P2Y12 inhibitors, and equal distribution of thrombotic events between the two strategies). RESULTS: Base-case analysis with a hypothetical cohort of 1000 subjects demonstrated 8.98 QALYs gained and €725,550.69 in cost savings for the genotype-guided strategy (dominant). The deterministic and probabilistic sensitivity analysis confirmed the robustness of the model and the cost-effectiveness results. In scenario analyses, the genotype-guided strategy remained dominant. CONCLUSION: In patients undergoing primary PCI, a CYP2C19 genotype-guided strategy compared with standard treatment with ticagrelor or prasugrel resulted in QALYs gained and cost savings. TRIAL REGISTRATION: Clinicaltrials.gov number: NCT01761786, Netherlands trial register number: NL2872

    Effect of Adding Ticagrelor to Standard Aspirin on Saphenous Vein Graft Patency in Patients Undergoing Coronary Artery Bypass Grafting (POPular CABG) A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    BACKGROUND: Approximately 15% of saphenous vein grafts (SVGs) occlude during the first year after coronary artery bypass graft surgery (CABG) despite aspirin use. The POPular CABG trial (The Effect of Ticagrelor on Saphenous Vein Graft Patency in Patients Undergoing Coronary Artery Bypass Grafting Surgery) investigated whether ticagrelor added to standard aspirin improves SVG patency at 1 year after CABG. METHODS: In this investigator-initiated, randomized, double-blind, placebo-controlled, multicenter trial, patients with ≥1 SVGs were randomly assigned (1:1) after CABG to ticagrelor or placebo added to standard aspirin (80 mg or 100 mg). The primary outcome was SVG occlusion at 1 year, assessed with coronary computed tomography angiography, in all patients that had primary outcome imaging available. A generalized estimating equation model was used to perform the primary analysis per SVG. The secondary outcome was 1-year SVG failure, which was a composite of SVG occlusion, SVG revascularization, myocardial infarction in myocardial territory supplied by a SVG, or sudden death. RESULTS: Among 499 randomly assigned patients, the mean age was 67.9±8.3 years, 87.1% were male, the indication for CABG was acute coronary syndrome in 31.3%, and 95.2% of procedures used cardiopulmonary bypass. Primary outcome imaging was available in 220 patients in the ticagrelor group and 223 patients in the placebo group. The SVG occlusion rate in the ticagrelor group was 10.5% (51 of 484 SVGs) versus 9.1% in the placebo group (43 of 470 SVGs), odds ratio, 1.29 [95% CI, 0.73-2.30]; P=0.38. SVG failure occurred in 35 (14.2%) patients in the ticagrelor group versus 29 (11.6%) patients in the placebo group (odds ratio, 1.22 [95% CI, 0.72-2.05]). CONCLUSIONS: In this randomized, placebo-controlled trial, the addition of ticagrelor to standard aspirin did not reduce SVG occlusion at 1 year after CABG. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02352402

    The association between skeletal muscle measures and chemotherapy-induced toxicity in non-small cell lung cancer patients

    Get PDF
    BACKGROUND: Chemotherapy-induced toxicities frequently occur in non-small cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. Low skeletal muscle mass (SMM) has been associated with a higher incidence of toxicities for several types of cancers and cytostatics. The aim of this study was to evaluate the association between skeletal muscle measures and chemotherapy-induced toxicity in a large cohort of NSCLC patients. METHODS: A multicentre prospective follow-up study (PGxLUNG, NTR number NL5373610015) in NSCLC patients was conducted. Included were patients diagnosed with NSCLC (stage II-IV) treated with first-line platinum-based (cisplatin or carboplatin) chemotherapy of whom pretreatment imaging was available. Skeletal muscle area (SMA) segmentation was performed on abdominal imaging at the level of the third lumbar vertebra (L3). SMA at the level of L3 was corrected for squared height (m2 ) to yield the lumbar skeletal muscle mass index (LSMI). Skeletal muscle density (SMD) was calculated as the mean Hounsfield Unit (HU) of the segmented SMA. SMM and SMD were categorized as low, intermediate, and high, based on LSMI and mean HU tertiles, respectively. Chemotherapy-induced toxicity was scored using CTCAE v4.03 and categorized into haematological (anaemia, leukocytopenia, neutropenia, and thrombocytopenia), non-haematological (nephrotoxicity, neurotoxicity, and esophagitis), and dose-limiting toxicity (DLT) (treatment switch, delay, de-escalation, discontinuation, or hospitalization). The relationship between SMM, SMD, and toxicities was assessed with logistic regression modelling taking into account potential confounders like gender and body mass index (BMI). RESULTS: In total, 297 patients (male n = 167, median age 64 years) were included. Haematological toxicity grade 3/4 was experienced in 36.6% (n = 108) of the patients, 24.6% (n = 73) experienced any non-haematological toxicity grade ≥2, and 55.6% (n = 165) any DLT. Multivariate logistic regression analysis showed that low SMM (ORadj 2.41, 95% CI 1.31-4.45, P = 0.005) and age at diagnosis >65 years (ORadj 1.76, 95% CI 1.07-2.90, P = 0.025) were statistically significantly associated with overall haematological toxicity grade 3/4. No statistically significant associations were found between low SMM or low SMD and non-haematological toxicities. Low SMM (ORadj 2.23, 95% CI 1.23-4.04, P = 0.008) and high SMD (ORadj 0.41, 95% CI 0.23-0.74, P = 0.003) were statistically significantly associated with a higher respectively lower risk of DLT. CONCLUSIONS: Non-small cell lung cancer patients with pretreatment low SMM are at significant higher risk for haematological toxicities grade 3/4 and DLT. NSCLC patients with high SMD are at significant lower risk for DLT. Further studies should be aimed to investigate whether platinum dosing based on skeletal muscle measurements and/or improvement of pretreatment SMM/SMD could reduce the risk of toxicity without compromising efficacy

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research
    corecore