4 research outputs found

    Hyperlipidaemia elicits an atypical, T helper 1-like CD4 + T-cell response: a key role for very low-density lipoprotein.

    Get PDF
    AIMS: Hyperlipidemia and T cell driven inflammation are important drivers of atherosclerosis, the main underlying cause of cardiovascular disease. Here, we detailed the effects of hyperlipidemia on T cells. METHODS AND RESULTS: In vitro, exposure of human and murine CD4+ T cells to very low-density lipoprotein (VLDL), but not to low-density lipoprotein (LDL) resulted in upregulation of Th1 associated pathways. VLDL was taken up via a CD36-dependent pathway and resulted in membrane stiffening and a reduction in lipid rafts. To further detail this response in vivo, T cells of mice lacking the LDL receptor (LDLr), which develop a strong increase in VLDL cholesterol and triglyceride levels upon high cholesterol feeding were investigated. CD4+ T cells of hyperlipidemic Ldlr-/- mice exhibited an increased expression of the C-X-C-chemokine receptor 3 (CXCR3) and produced more interferon-γ (IFN-γ). Gene set enrichment analysis identified IFN-γ-mediated signaling as the most upregulated pathway in hyperlipidemic T cells. However, the classical Th1 associated transcription factor profile with strong upregulation of Tbet and Il12rb2 was not observed. Hyperlipidemia did not affect levels of the CD4+ T cell's metabolites involved in glycolysis or other canonical metabolic pathways but enhanced amino acids levels. However, CD4+ T cells of hyperlipidemic mice showed increased cholesterol accumulation and an increased arachidonic acid (AA) to docosahexaenoic acid (DHA) ratio, which was associated with inflammatory T cell activation. CONCLUSIONS: Hyperlipidemia, and especially its VLDL component induces an atypical Th1 response in CD4+ T cells. Underlying mechanisms include CD36 mediated uptake of VLDL, and an altered AA/DHA ratio

    Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state

    Get PDF
    AIMS: CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signaling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-TNF Receptor Associated Factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS: Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, were reduced in CD40mac-/- compared to CD40wt mice and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses.Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206 + CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages (BMDMs) of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1 and Tns1). CONCLUSIONS: We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis

    Hyperlipidaemia elicits an atypical, T helper 1-like CD4<sup>+</sup>T-cell response:A key role for very low-density lipoprotein

    Get PDF
    Aims: Hyperlipidemia and T cell driven inflammation are important drivers of atherosclerosis, the main underlying cause of cardiovascular disease. Here, we detailed the effects of hyperlipidemia on T cells. Methods and results: In vitro, exposure of human and murine CD4+ T cells to very low-density lipoprotein (VLDL), but not to low-density lipoprotein (LDL) resulted in upregulation of Th1 associated pathways. VLDL was taken up via a CD36-dependent pathway and resulted in membrane stiffening and a reduction in lipid rafts. To further detail this response in vivo, T cells of mice lacking the LDL receptor (LDLr), which develop a strong increase in VLDL cholesterol and triglyceride levels upon high cholesterol feeding were investigated. CD4+ T cells of hyperlipidemic Ldlr-/-mice exhibited an increased expression of the C-X-C-chemokine receptor 3 (CXCR3) and produced more interferon-?(IFN-?). Gene set enrichment analysis identified IFN-?-mediated signaling as the most upregulated pathway in hyperlipidemic T cells. However, the classical Th1 associated transcription factor profile with strong upregulation of Tbet and Il12rb2 was not observed. Hyperlipidemia did not affect levels of the CD4+ T cell's metabolites involved in glycolysis or other canonical metabolic pathways but enhanced amino acids levels. However, CD4+ T cells of hyperlipidemic mice showed increased cholesterol accumulation and an increased arachidonic acid (AA) to docosahexaenoic acid (DHA) ratio, which was associated with inflammatory T cell activation. Conclusions: Hyperlipidemia, and especially its VLDL component induces an atypical Th1 response in CD4+ T cells. Underlying mechanisms include CD36 mediated uptake of VLDL, and an altered AA/DHA ratio
    corecore