39 research outputs found
Lower trunk motion and speed-dependence during walking
Abstract Background There is a limited understanding about how gait speed influences the control of upper body motion during walking. Therefore, the primary purpose of this study was to examine how gait speed influences healthy individual's lower trunk motion during overground walking. The secondary purpose was to assess if Principal Component Analysis (PCA) can be used to gain further insight into postural responses that occur at different walking speeds. Methods Thirteen healthy subjects (23 ± 3 years) performed 5 straight-line walking trials at self selected slow, preferred, and fast walking speeds. Accelerations of the lower trunk were measured in the anterior-posterior (AP), vertical (VT), and mediolateral (ML) directions using a triaxial accelerometer. Stride-to-stride acceleration amplitude, regularity and repeatability were examined with RMS acceleration, Approximate Entropy and Coefficient of Multiple determination respectively. Coupling between acceleration directions were calculated using Cross Approximate Entropy. PCA was used to reveal the dimensionality of trunk accelerations during walking at slow and preferred speeds, and preferred and fast speeds. Results RMS acceleration amplitude increased with gait speed in all directions. ML and VT trunk accelerations had less signal regularity and repeatability during the slow compared to preferred speed. However, stride-to-stride acceleration regularity and repeatability did not differ between the preferred and fast walking speed conditions, partly due to an increase in coupling between frontal plane accelerations. The percentage of variance accounted for by each trunk acceleration Principal Component (PC) did not differ between grouped slow and preferred, and preferred and fast walking speed acceleration data. Conclusion The main finding of this study was that walking at speeds slower than preferred primarily alters lower trunk accelerations in the frontal plane. Despite greater amplitudes of trunk acceleration at fast speeds, the lack of regularity and repeatability differences between preferred and fast speeds suggest that features of trunk motion are preserved between the same conditions. While PCA indicated that features of trunk motion are preserved between slow and preferred, and preferred and fast speeds, the discriminatory ability of PCA to detect speed-dependent differences in walking patterns is limited compared to measures of signal regularity, repeatability, and coupling.</p
Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!
Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed
Does osteoporosis predispose falls? a study on obstacle avoidance and balance confidence
Contains fulltext :
96832.pdf (publisher's version ) (Open Access)BACKGROUND: Osteoporosis is associated with changes in balance and physical performance and has psychosocial consequences which increase the risk of falling. Most falls occur during walking; therefore an efficient obstacle avoidance performance might contribute to a reduction in fall risk. Since it was shown that persons with osteoporosis are unstable during obstacle crossing it was hypothesized that they more frequently hit obstacles, specifically under challenging conditions. METHODS: Obstacle avoidance performance was measured on a treadmill and compared between persons with osteoporosis (n = 85) and the comparison group (n = 99). The obstacle was released at different available response times (ART) to create different levels of difficulty by increasing time pressure. Furthermore, balance confidence, measured with the short ABC-questionnaire, was compared between the groups. RESULTS: No differences were found between the groups in success rates on the obstacle avoidance task (p = 0.173). Furthermore, the persons with osteoporosis had similar levels of balance confidence as the comparison group (p = 0.091). The level of balance confidence was not associated with the performance on the obstacle avoidance task (p = 0.145). CONCLUSION: Obstacle avoidance abilities were not impaired in persons with osteoporosis and they did not experience less balance confidence than the comparison group. These findings imply that persons with osteoporosis do not have an additional risk of falling because of poorer obstacle avoidance abilities
Training dual-task walking in community-dwelling adults within 1 year of stroke: A protocol for a single-blind randomized controlled trial
Background: Community ambulation is a highly complex skill requiring the ability to adapt to increased environmental complexity and perform multiple tasks simultaneously. After stroke, individuals demonstrate a diminished ability to perform dual-tasks. Current evidence suggests that conventional rehabilitation does not adequately address gait-related dual-task impairments after stroke, which may be contributing to low levels of participation and physical inactivity in community-dwelling stroke survivors. The objective of this study is to investigate the efficacy of dual-task gait training in community-dwelling adults within 1 year of stroke. Specifically, we will compare the effects of dual-task gait training and single-task gait training on cognitive-motor interference during walking at preferred speed and at fastest comfortable speed (Aim 1), locomotor control during obstacle negotiation (Aim 2), and spontaneous physical activity (Aim 3). Methods/design: This single-blind randomized controlled trial will involve 44 individuals within 12 months of stroke. Following baseline evaluation, participants will be randomly allocated to single- or dual-task gait training. Both groups will receive 12, 30-minute sessions provided one-on-one over 4–6 weeks in an outpatient therapy setting. Single-task gait training involves practice of gait activities incorporating motor relearning principles. Dual-task gait training involves an identical gait training protocol; the critical difference being that the dual-task gait training group will practice the gait activities while simultaneously performing a cognitive task for 75% of the repetitions. Blinded assessors will measure outcomes at baseline, post-intervention, and 6 months after completion of the intervention. The primary outcome measure will be dual-task effects on gait speed and cognition during unobstructed walking. Secondary outcomes include spatiotemporal and kinetic gait parameters during unobstructed single- and dual-task walking at preferred and fastest comfortable walking speeds, gait parameters during high and low obstacle crossing, spontaneous physical activity, executive function, lower extremity motor function, Timed Up and Go, balance self-efficacy, number of falls, and stroke-related disability. Hypotheses for each aim will be tested using an intention-to-treat analysis with repeated measures ANOVA design. Discussion: This trial will provide evidence to help clinicians make decisions about the types of activities to include in rehabilitation to improve dual-task walking after stroke
Muscle synergies and spinal maps are sensitive to the asymmetry induced by a unilateral stroke
Background: Previous studies have shown that a cerebrovascular accident disrupts the coordinated control of leg muscles during locomotion inducing asymmetric gait patterns. However, the ability of muscle synergies and spinal maps to reflect the redistribution of the workload between legs after the trauma has not been investigated so far. Methods: To investigate this issue, twelve post-stroke and ten healthy participants were asked to walk on a treadmill at controlled speeds (0.5, 0.7, 0.9, 1.1 km/h), while the EMG activity of twelve leg muscles was recorded on both legs. The synergies underlying muscle activation and the estimated motoneuronal activity in the lumbosacral enlargement (L2-S2) were computed and compared between groups. Results: Results showed that muscle synergies in the unaffected limb were significantly more comparable to those of the healthy control group than the ones in the affected side. Spinal maps were dissimilar between the affected and unaffected sides highlighting a significant shift of the foci of the activity toward the upper levels of the spinal cord in the unaffected leg. Conclusions: Muscle synergies and spinal maps reflect the asymmetry as a motor deficit after stroke. However, further investigations are required to support or reject the hypothesis that the altered muscular organization highlighted by muscle synergies and spinal maps may be due to the concomitant contribution of the altered information coming from the upper part of the CNS, as resulting from the stroke, and to the abnormal sensory feedback due to the neuromuscular adaptation of the patients