10 research outputs found

    Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by insulin resistance and hyperglycemia and is associated with personal health and global economic burdens. Current strategies/approaches of insulin resistance and T2DM prevention and treatment are lacking in efficacy resulting in the need for new preventative and targeted therapies. In recent years, epidemiological studies have suggested that diets rich in vegetables and fruits are associated with health benefits including protection against insulin resistance and T2DM. Naringenin, a citrus flavanone, has been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, immunomodulatory and antidiabetic properties. The current review summarizes the existing in vitro and in vivo animal studies examining the anti-diabetic effects of naringeninBrock University Library Open Access Publishing Fun

    Role of the Myokine Irisin on Bone Homeostasis: Review of the Current Evidence

    Get PDF
    Bone is a highly dynamic tissue that is constantly adapting to micro-changes to facilitate movement. When the balance between bone building and resorption shifts more towards bone resorption, the result is reduced bone density and mineralization, as seen in osteoporosis or osteopenia. Current treatment strategies aimed to improve bone homeostasis and turnover are lacking in efficacy, resulting in the search for new preventative and nutraceutical treatment options. The myokine irisin, since its discovery in 2012, has been shown to play an important role in many tissues including muscle, adipose, and bone. Evidence indicate that irisin is associated with increased bone formation and decreased bone resorption, leading to reduced risk of osteoporosis in post-menopausal women. In addition, low serum irisin levels have been found in individuals with osteoporosis and osteopenia. Irisin targets key signaling proteins, promoting osteoblastogenesis and reducing osteoclastogenesis. The present review summarizes the existing evidence regarding the effects of irisin on bone homeostasis.Brock Library Open Access Publishing Fun

    Anticancer Properties of Carnosol: A Summary of In Vitro and In Vivo Evidence

    Get PDF
    Cancer is characterized by unrestricted cell proliferation, inhibition of apoptosis, enhanced invasion and migration, and deregulation of signalling cascades. These properties lead to uncontrolled growth, enhanced survival, and the formation of tumours. Carnosol, a naturally occurring phyto-polyphenol (diterpene) found in rosemary, has been studied for its extensive antioxidant, anti-inflammatory, and anticancer effects. In cancer cells, carnosol has been demonstrated to inhibit cell proliferation and survival, reduce migration and invasion, and significantly enhance apoptosis. These anticancer effects of carnosol are mediated by the inhibition of several signalling molecules including extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), Akt, mechanistic target of rapamycin (mTOR) and cyclooxygenase-2 (COX-2). Additionally, carnosol prevents the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and promotes apoptosis, as indicated by increased levels of cleaved caspase-3, -8, -9, increased levels of the pro-apoptotic marker Bcl-2-associated X (BAX), and reduced levels of the anti-apoptotic marker B-cell lymphoma 2 (Bcl-2). The current review summarizes the existing in vitro and in vivo evidence examining the anticancer effects of carnosol across various tissues

    Antidiabetic Properties of Curcumin I: Evidence from In Vitro Studies

    No full text
    Type 2 diabetes mellitus (T2DM) is a growing metabolic disease characterized by insulin resistance and hyperglycemia. Current preventative and treatment strategies for T2DM and insulin resistance lack in efficacy resulting in the need for new approaches to prevent and manage/treat the disease better. In recent years, epidemiological studies have suggested that diets rich in fruits and vegetables have beneficial health effects including protection against insulin resistance and T2DM. Curcumin, a polyphenol found in turmeric, and curcuminoids have been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, immunomodulatory and antidiabetic properties. The current review (I of II) summarizes the existing in vitro studies examining the antidiabetic effects of curcumin, while a second (II of II) review summarizes evidence from existing in vivo animal studies and clinical trials focusing on curcumin’s antidiabetic properties

    Antidiabetic Properties of Curcumin II: Evidence from In Vivo Studies

    No full text
    Type 2 diabetes mellitus (T2DM) is a growing metabolic disease characterized by insulin resistance and hyperglycemia. Current preventative and treatment approaches to insulin resistance and T2DM lack in efficacy, resulting in the need for new approaches to prevent and treat the disease. In recent years, epidemiological studies have suggested that diets rich in fruits and vegetables have beneficial health effects, including protection against insulin resistance and T2DM. Curcumin, a polyphenol found in turmeric, and curcuminoids have been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, immunomodulatory and antidiabetic properties. The current review (II of II) summarizes the existing in vivo studies examining the antidiabetic effects of curcumin

    Amelioration of High-Insulin-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Restoration of GLUT4 Translocation

    No full text
    Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), is linked to hyperinsulinemia, which develops to counterbalance initial peripheral hormone resistance. Studies indicate that chronically elevated levels of insulin lead to skeletal muscle insulin resistance by deregulating steps within the insulin signaling cascade. The polyphenol resveratrol (RSV) has been shown to have antidiabetic properties in vitro and in vivo. In the present study, we examined the effect of RSV on high insulin (HI)-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal muscle cells were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to HI levels (100 nM) for 24 h decreased the acute-insulin-stimulated 2DG uptake, indicating insulin resistance. HI increased ser307 and ser636/639 phosphorylation of IRS-1 (to 184% ± 12% and 225% ± 28.9% of control, with p < 0.001 and p < 0.01, respectively) and increased the phosphorylation levels of mTOR (174% ± 6.7% of control, p < 0.01) and p70 S6K (228% ± 33.5% of control, p < 0.01). Treatment with RSV abolished these HI-induced responses. Furthermore, RSV increased the activation of AMPK and restored the insulin-mediated increase in plasma membrane GLUT4 glucose transporter levels. These data suggest that RSV has a potential to counteract the HI-induced muscle insulin resistance

    Attenuation of Free Fatty Acid (FFA)-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol is Linked to Activation of AMPK and Inhibition of mTOR and p70 S6K

    No full text
    Insulin resistance, a main characteristic of type 2 diabetes mellitus (T2DM), is linked to obesity and excessive levels of plasma free fatty acids (FFA). Studies indicated that significantly elevated levels of FFAs lead to skeletal muscle insulin resistance, by dysregulating the steps in the insulin signaling cascade. The polyphenol resveratrol (RSV) was shown to have antidiabetic properties but the exact mechanism(s) involved are not clearly understood. In the present study, we examined the effect of RSV on FFA-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal myotubes were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to FFA palmitate decreased the insulin-stimulated glucose uptake, indicating insulin resistance. Palmitate increased ser307 (131% ± 1.84% of control, p < 0.001) and ser636/639 (148% ± 10.1% of control, p < 0.01) phosphorylation of IRS-1, and increased the phosphorylation levels of mTOR (174% ± 15.4% of control, p < 0.01) and p70 S6K (162% ± 20.2% of control, p < 0.05). Treatment with RSV completely abolished these palmitate-induced responses. In addition, RSV increased the activation of AMPK and restored the insulin-mediated increase in (a) plasma membrane GLUT4 glucose transporter levels and (b) glucose uptake. These data suggest that RSV has the potential to counteract the FFA-induced muscle insulin resistance

    Attenuation of Free Fatty Acid (FFA)-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol is Linked to Activation of AMPK and Inhibition of mTOR and p70 S6K

    No full text
    Insulin resistance, a main characteristic of type 2 diabetes mellitus (T2DM), is linked to obesity and excessive levels of plasma free fatty acids (FFA). Studies indicated that significantly elevated levels of FFAs lead to skeletal muscle insulin resistance, by dysregulating the steps in the insulin signaling cascade. The polyphenol resveratrol (RSV) was shown to have antidiabetic properties but the exact mechanism(s) involved are not clearly understood. In the present study, we examined the effect of RSV on FFA-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal myotubes were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to FFA palmitate decreased the insulin-stimulated glucose uptake, indicating insulin resistance. Palmitate increased ser307 (131% ± 1.84% of control, p < 0.001) and ser636/639 (148% ± 10.1% of control, p < 0.01) phosphorylation of IRS-1, and increased the phosphorylation levels of mTOR (174% ± 15.4% of control, p < 0.01) and p70 S6K (162% ± 20.2% of control, p < 0.05). Treatment with RSV completely abolished these palmitate-induced responses. In addition, RSV increased the activation of AMPK and restored the insulin-mediated increase in (a) plasma membrane GLUT4 glucose transporter levels and (b) glucose uptake. These data suggest that RSV has the potential to counteract the FFA-induced muscle insulin resistance

    Carnosic Acid Attenuates the Free Fatty Acid-Induced Insulin Resistance in Muscle Cells and Adipocytes

    No full text
    Elevated blood free fatty acids (FFAs), as seen in obesity, impair insulin action leading to insulin resistance and Type 2 diabetes mellitus. Several serine/threonine kinases including JNK, mTOR, and p70 S6K cause serine phosphorylation of the insulin receptor substrate (IRS) and have been implicated in insulin resistance. Activation of AMP-activated protein kinase (AMPK) increases glucose uptake, and in recent years, AMPK has been viewed as an important target to counteract insulin resistance. We reported previously that carnosic acid (CA) found in rosemary extract (RE) and RE increased glucose uptake and activated AMPK in muscle cells. In the present study, we examined the effects of CA on palmitate-induced insulin-resistant L6 myotubes and 3T3L1 adipocytes. Exposure of cells to palmitate reduced the insulin-stimulated glucose uptake, GLUT4 transporter levels on the plasma membrane, and Akt activation. Importantly, CA attenuated the deleterious effect of palmitate and restored the insulin-stimulated glucose uptake, the activation of Akt, and GLUT4 levels. Additionally, CA markedly attenuated the palmitate-induced phosphorylation/activation of JNK, mTOR, and p70S6K and activated AMPK. Our data indicate that CA has the potential to counteract the palmitate-induced muscle and fat cell insulin resistance
    corecore