99 research outputs found

    Roadmap to personalized medicine

    Get PDF
    Abstract Standard clinical protocols and the concept “one drug fits all” that are currently used to treat illness in many cases are not effective, and strikingly so in the treatment of cancer, where 75% of therapeutic schemes are ineffective. The concept of personalized medicine is that the treatment of the disease is designed on the basis of the individual needs of each patient and the factors that influence their response to different drugs. Individualization of patient care has the potential to generate novel effective therapies, limit the adverse drug effects, create optimal treatments for individual patients, and decrease the cost associated with chronic illness and complications of drug usage. However, to achieve the goals of personalized medicine many challenges must be addressed. Here we discuss possible ways to increase the consistency of data generated by basic research and their suitability for application in medicine. New technologies employing systems biology and computer based approaches will facilitate overcoming many of the scientific challenges in the field. Changes in the education of researchers, health professionals, and the public are also required to successfully implement personalized medicine as a routine in the clinic. Finally, shift of the focus away from the development of blockbuster drugs in the biopharmaceutical industry, and modifications in the legal system to accommodate novel advancements need to be considered. The joint effort of all interested parties is needed to generate an efficient roadmap that will take us rapidly and safely to effective individual treatment, which will eliminate diseases and create better health care for all

    The transcriptional cofactor PCAF as mediator of the interplay between p53 and HIF-1 alpha and its role in the regulation of cellular energy metabolism

    Get PDF
    Energy production is a very important function for the cells to maintain homeostasis, survive and proliferate. Cellular energy can be produced either through oxidative phosphorylation (OXPHOS) in the presence of oxygen or glycolysis in its absence. Cancer cells, even in the presence of oxygen prefer to produce energy through glycolysis and this confers them a survival advantage. Energy metabolism has recently attracted the interest of several laboratories as targeting the pathways for energy production in cancer cells could be an efficient anticancer treatment. For that purpose the role of various transcription factors in determining the pathway of energy production has been investigated extensively and there is evidence to suggest that oncogenic transcription factors promote glycolysis whereas tumour suppressors demote it. In line with this notion, the master regulator of cellular response to hypoxia, the Hypoxia Inducible Factor 1 (HIF-1) has been shown to induce the expression of a variety of genes encoding enzymes involved in glucose metabolism as well as OXPHOS favouring energy production through glucose metabolism in hypoxic cells. The tumour suppressor p53 on the other hand inhibits glycolysis and stimulates OXPHOS. One of the pathways through which p53 exerts these effects, is by inducing the inhibitor of glycolysis TIGAR and the cytochrome c oxidase assembly factor SCO2 gene expression under DNA damage conditions. However, the regulation of the expression of these genes in hypoxic conditions has been only partially elucidated. We hypothesised that under hypoxic conditions, TIGAR and SCO2 gene expression might be differentially regulated in cells bearing mutated p53 and in these cells the involvement of HIF-1 could be crucial. Indeed under hypoxia mimicking conditions, the TIGAR and SCO2 protein and mRNA levels were found to be modulated differentially in p53 wild type and mutant cell lines. The bioinformatics analysis revealed the presence of hypoxia responsive elements (HREs) within the regulatory region of the promoters of TIGAR and SCO2 genes. Firefly reporter assays and chromatin immunoprecipitation (ChIP) assays have indicated that HIF-1 plays a crucial role in the regulation of TIGAR gene expression. The direct involvement of HIF-1 in the regulation of SCO2 gene expression requires further investigation. We and others have recently reported that PCAF is a common cofactor for p53 and HIF-1α, regulating the protein stability and transcription target selectivity of both transcription factors thereby orchestrating the balance between life and death in cancer cells. We hypothesised that PCAF plays a similar role in the regulation of cellular energy metabolism by differentially targeting HIF-1α and p53 to the promoter of TIGAR and SCO2 genes. In this study we present evidence to support the notion that PCAF plays an import role in the regulation of TIGAR and SCO2 gene expression under hypoxic mimicking conditions. This conclusion was supported by assessing the functional consequences of PCAFwt and PCAFΔHAT overexpression on the intracellular lactate production, cellular oxygen consumption, NAD+/NADH ratio and ROS generation in cells under hypoxia mimicking conditions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Immunotherapy advances for mesothelioma treatment.

    Get PDF
    INTRODUCTION Mesothelioma is a rare type of cancer that is strongly tied to asbestos exposure. Despite application of different modalities such as chemotherapy, radiotherapy and surgery, patient prognosis remains very poor and therapies are ineffective. Much research currently focuses on the application of novel approaches such as immunotherapy towards this disease. Areas covered: The types, stages and aetiology of mesothelioma are detailed, followed by a discussion of the current treatment options such as radiotherapy, surgery, and chemotherapy. A description of innate and adaptive immunity and the principles and justification of immunotherapy is also included. Clinical trials for different immunotherapeutic modalities are described, and lastly the article closes with an expert commentary and five-year view, the former of which is summarised below. Expert commentary: Current efforts for novel mesothelioma therapies have been limited by attempting to apply treatments from other cancers, an approach which is not based on a solid understanding of mesothelioma biology. In our view, the influence of the hostile, hypoxic microenvironment and the gene expression and metabolic changes that resultantly occur should be characterised to improve therapies. Lastly, clinical trials should focus on overall survival rather than surrogate endpoints to avoid bias and inaccurate reflections of treatment effects

    Promising investigational drug candidates in phase I and phase II clinical trials for mesothelioma

    Get PDF
    Introduction: Malignant mesothelioma is a rare and lethal malignancy primarily affecting the pleura and peritoneum. Mesothelioma incidence is expected to increase worldwide and current treatments remain ineffective, leading to poor prognosis. Within this article potential targets to improve the quality of life of the patients and assessment of further avenues for research are discussed. Areas covered: This review highlights emerging therapies currently under investigation for malignant mesothelioma with a specific focus on phase I and phase II clinical trials. Three main areas are discussed: immunotherapy (immune checkpoint blockade and cancer vaccines, among others), multitargeted therapy (such as targeting pro-angiogenic genes) and gene therapy (such as suicide gene therapy). For each, clinical trials are described to detail the current or past investigations at phase I and II. Expert opinion: The approach of applying existing treatments from other cancers does not show significant benefit, with the most promising outcome being an increase in survival of 2.7 months following combination of chemotherapy with bevacizumab. It is our opinion that the hypoxic microenvironment, the role of the stroma, and the metabolic status of mesothelioma should all be assessed and characterised to aid in the development of new treatments to improve patient outcomes

    The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cyclin-dependent kinase (CDK) and mitogen-activated protein kinase (MAPK) mediated phosphorylation of glucocorticoid receptor (GR) exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs) mediated apoptosis.</p> <p>Results</p> <p>We have identified putative Glucocorticoid Response Elements (GREs) within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies.</p> <p>Conclusions</p> <p>GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC based therapies of leukaemia.</p

    Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain

    Get PDF
    Chronic stress and impaired glucocorticoid receptor (GR) feedback are important factors for the compromised hypothalamic–pituitary–adrenal (HPA) axis activity. We investigated the effects of chronic 21 day isolation of Wistar rats on the extrinsic negative feedback part of HPA axis: hippocampus (HIPPO) and prefrontal cortex (PFC). In addition to serum corticosterone (CORT), we followed GR subcellular localization, GR phosphorylation at serine 232 and serine 246, expression of GR regulated genes: GR, CRF and brain-derived neurotropic factor (BDNF), and activity of c-Jun N-terminal kinase (JNK) and Cdk5 kinases that phosphorylate GR. These parameters were also determined in animals subjected to acute 30 min immobilization, which was taken as ‘normal’ adaptive response to stress. In isolated animals, we found decreased CORT, whereas in animals exposed to acute immobilization, CORT was markedly increased. Even though the GR was predominantly localized in the nucleus of HIPPO and PFC in acute, but not in chronic stress, the expression of GR, CRF, and BDNF genes was similarly regulated under both acute and chronic stresses. Thus, the transcriptional activity of GR under chronic isolation did not seem to be exclusively dependent on high serum CORT levels nor on the subcellular location of the GR protein. Rather, it resulted from the increased Cdk5 activation and phosphorylation of the nuclear GR at serine 232 and the decreased JNK activity reflected in decreased phosphorylation of the nuclear GR at serine 246. Our study suggests that this nuclear isoform of hippocampal and cortical GR may be related to hypocorticism i.e. HPA axis hypoactivity under chronic isolation stress

    An evaluation of peer-to-peer feedback using adaptive comparative judgement

    Get PDF
    Adaptive Comparative Judgement is an alternative to conventional marking in which the assessor (or judge) merely compares two answers and chooses a winner. Repeated judgements and the use of a suitable sorting algorithm allow marked to be derived from a rank order of scripts. Feedback can be added to each script as it is judged. We have evaluated the use of adaptive comparative judgement for peer assessment and feedback using a case study in the third year of a Pharmacy programme. The exercise consisted of five parts each of 100 words. Each student conducted 10 judgements and left feedback, which was of overall very high quality. The assessment, however, was less successful. Students’ judgements were not very consistent with one another, nor with staff assessment. This contrasts with a previous exercise, in which the student assessment was of high reliability but the feedback was less good. This exercise was successful in promoting mutual support among students through the giving and receiving of feedback. We conclude, however, that for optimum use of adaptive comparative judgement for peer assessment, a hierarchical marking scheme is required, but students should be encouraged to give feedback on all aspects of the assessment

    Study of cellular delivery of siRNA and shRNA targeting bcr-abl in chronic myeloid leukemia using Tat derived peptide

    Get PDF
    Chronic Myeloid Leukemia is characterised by the formation of a fusion gene bcr-abl. The gene product BCR-ABL has deregulated tyrosine kinase activity that plays a direct role in the pathogenesis of the disease. Recently, use of siRNA in leukaemic cells has led to effective gene silencing of bcr-abl. Gene delivery systems like viral vectors, electroporation and lipid based vectors have showed varying efficiencies but are limited by their level of toxicity and immunogenicity. Developments in the field of Cell Penetrating Peptides have shown effective cellular uptake of nucleic acids and proteins by the CPPs in vitro and in vivo. Report from our lab has shown the use of CPP Tat along with membrane active peptide LK15 to improve the transfection efficiency of both Tat and LK15 peptides individually. Hence, this study will focus on the use of Tat-LK15 peptide to study the delivery of siRNA and shRNA plasmid in K562 cells and observe the BCR-ABL protein expression. Cellular uptake studies using Tat-LK15 based complexes of Cy5-labelled DNA and siRNA showed a concentration dependent uptake leading to increase in percentage transfected cells. Tat-LK15 based DNA complexes achieved 80% transfected cells (charge ratio of 2:1) while siRNA complexes resulted in a maximum of 60% (charge ratio of 3:1). However, Lipofectamine based DNA complexes did not show a concentration dependent increase in percentage transfected cells. Interestingly, Tat-LK15 based siRNA complexes showed a similar level of uptake and percentage transfected cells as that of Lipofectamine based siRNA complexes. Cellular uptake studies using confocal microscopy 4 hours post transfection, showed that when 1μg of DNA was transfected, the labelled DNA was primarily localised on the cell membrane. Interestingly, using 5μg of DNA led to increased intracellular localisation of the labelled DNA, but this observation was not made with Lipofectamine based complexes. The observation at 24 hours post transfection of Tat-LK15/labelled DNA complexes was of higher intensity when compared to that of Lipofectamine based DNA complexes. The reason for this is however not known. Interestingly, the cellular uptake profile using siRNA based complexes was different. At 4 hours post transfection, there was intracellular localisation of labelled siRNA. 24 hours post transfection, there was diffuse cytoplasmic localisation using lower concentration of siRNA whereas using higher concentration led to more high intensity punctate localisations within the cell. Similar observations were made for both Tat-LK15 and Lipofectamine based siRNA complexes.Gene silencing studies of Tat-LK15/shRNA plasmid complex resulted in 80% reduction in protein levels 96 hours post transfection for higher concentrations of shRNA plasmid treated. Similar level of reduction in BCR-ABL was observed with Lipofectamine based complex. Supporting evidence of reduction in mRNA levels was observed using qRT-PCR 48 hours post transfection. However, Tat-LK15/shRNA plasmid complexes led to around 80% of protein reduction 192 hours post transfection while Lipofectamine based complexes resulted in only 40% of protein reduction. Transfection using increasing concentrations of siRNA complexed to Tat-LK15 and Lipofectamine led to greater than 70% reduction in protein levels for most concentration ranges tested. This reduction in protein levels lasted only 48 hours post transfection. In conclusion, Tat-LK15 peptide could be used for shRNA plasmid and siRNA based delivery and could offer an efficient gene delivery model for studying RNAi.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore