294 research outputs found

    Beauty production in small systems with ALICE at the LHC

    No full text
    The measurement of beauty production in proton-proton (pp) collisions offers the possibility to test predictions based on perturbative Quantum Chromodynamics (QCD) calculations, to investigate mechanisms of heavy-flavour fragmentation, and to provide a reference for corresponding measurements in heavy-ion collisions. Thanks to the excellent tracking capabilities, measurements with the ALICE experiment can assess beauty production down to low momenta. In this document, recent measurements of the ALICE Collaboration on beauty production in pp collisions at s=13 \sqrt{s}=13\,TeV are presented

    Neutron emission in ultraperipheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208Pb nuclei at sNN−−−√=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN−−−√=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh)

    K∗(892)0 and φ(1020) production in p–Pb collisions at √sNN = 8.16 TeV

    No full text
    The production of K∗(892)0 and ϕ(1020) resonances has been measured in p-Pb collisions at sNN−−−√ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval −0.5 8 GeV/c), the RpPb values of all hadrons are consistent with unity within uncertainties. The RpPb of K∗(892)0 and ϕ(1020) at sNN−−−√ = 8.16 and 5.02 TeV show no significant energy dependence

    Towards the understanding of the genuine three-body interaction for p–p–p and p–p–Λ

    No full text
    Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p−p−p and p−p−Λ systems in terms of three-particle correlation functions carried out for pp collisions at s√=13 TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p−p−p system, hinting to the presence of a residual three-body effect while for p−p−Λ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC

    Polarization of Λ and ¯Λ hyperons along the beam direction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The polarization of the Λ and Λ¯¯¯¯ hyperons along the beam (z) direction, Pz, has been measured in Pb-Pb collisions at sNN−−−√ = 5.02TeV recorded with ALICE at the Large Hadron Collider (LHC). The main contribution to Pz comes from elliptic flow induced vorticity and can be characterized by the second Fourier sine coefficient Pz,s2=⟹Pzsin(2φ−2Κ2)⟩, where φ is the hyperon azimuthal emission angle, and Κ2 is the elliptic flow plane angle. We report the measurement of Pz,s2 for different collision centralities, and in the 30-50% centrality interval as a function of the hyperon transverse momentum and rapidity. The Pz,s2 is positive similarly as measured by the STAR Collaboration in Au-Au collisions at sNN−−−√ = 200 GeV, with somewhat smaller amplitude in the semi-central collisions. This is the first experimental evidence of a non-zero hyperon Pz in Pb-Pb collisions at the LHC. The comparison of the measured Pz,s2 with the hydrodynamic model calculations shows sensitivity to the competing contributions from thermal and the recently found shear induced vorticity, as well as to whether the polarization is acquired at the quark-gluon plasma or the hadronic phase

    Energy dependence of φ meson production at forward rapidity in pp collisions at the LHC

    No full text
    The production of ϕ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region 2.5<y<4. Measurements of the differential cross section d2σ/dydpT are presented as a function of the transverse momentum (pT) at the center-of-mass energies s√=5.02, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at s√=5.02 and 13 TeV are also studied in several rapidity intervals as a function of pT, and as a function of rapidity in three pT intervals. A hardening of the pT-differential cross section with the collision energy is observed, while, for a given energy, pT spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing pT. The new results, complementing the published measurements at s√=2.76 and 7 TeV, allow one to establish the energy dependence of ϕ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with pT and rapidity at all the energies

    Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    This article presents groomed jet substructure measurements in pp and Pb−Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector. The Soft Drop grooming algorithm provides access to the hard parton splittings inside a jet by removing soft wide-angle radiation. We report the groomed jet momentum splitting fraction, zg, and the (scaled) groomed jet radius, ξg. Charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm with resolution parameters R=0.2 and R=0.4. In heavy-ion collisions, the large underlying event poses a challenge for the reconstruction of groomed jet observables, since fluctuations in the background can cause groomed parton splittings to be misidentified. By using strong grooming conditions to reduce this background, we report these observables fully corrected for detector effects and background fluctuations for the first time. A narrowing of the ξg distribution in Pb−Pb collisions compared to pp collisions is seen, which provides direct evidence of the modification of the angular structure of jets in the quark−gluon plasma. No significant modification of the zg distribution in Pb−Pb collisions compared to pp collisions is observed. These results are compared with a variety of theoretical models of jet quenching, and provide constraints on jet energy-loss mechanisms and coherence effects in the quark−gluon plasma

    Measurement of inclusive and leading subjet fragmentation in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    This article presents new measurements of the fragmentation properties of jets in both proton-proton (pp) and heavy-ion collisions with the ALICE experiment at the LHC. We report distributions of the fraction zr of transverse momentum carried by subjets of radius r within jets of radius R. Charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm with jet radius R=0.4, and subjets are reconstructed by reclustering the jet constituents using the anti-kT algorithm with radii r=0.1 and r=0.2. In pp collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the zr distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet fragmentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The zr distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark-gluon plasma (QGP). We find no significant modification of zr distributions in Pb-Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for zr<0.95, as predicted by several jet quenching models. As zr→1 our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP

    K0S- and (anti-)Λ-hadron correlations in pp collisions at √s = 13 TeV

    No full text
    Two-particle azimuthal correlations are measured with the ALICE apparatus in pp collisions at s√=13 TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson (K0S) or a baryon (Λ) with transverse momentum pT>3 GeV/c is produced. Azimuthal correlations between kaons or Λ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger (3<ptriggT<20 GeV/c) and associated particle pT (1 GeV/c <passocT<ptriggT), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either K0S or Λ(Λ¯¯¯¯) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators

    Energy dependence of coherent photonuclear production of J/ψ mesons in ultra-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The cross section for coherent photonuclear production of J/ψ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of sNN−−−√=5.02 TeV. Cross sections are presented in five different J/ψ rapidity ranges within |y|<4, with the J/ψ reconstructed via its dilepton decay channels. In some events the J/ψ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range 17<WÎłPb,n<920 GeV, where WÎłPb,n is the centre-of-mass energy per nucleon of the ÎłPb system. This range corresponds to a Bjorken-x interval spanning about three orders of magnitude: 1.1×10−5<x<3.3×10−2. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies
    • 

    corecore