8 research outputs found
SO(5) Theory of Antiferromagnetism and Superconductivity
Antiferromagnetism and superconductivity are both fundamental and common
states of matter. In many strongly correlated systems, including the high Tc
cuprates, the heavy fermion compounds and the organic superconductors, they
occur next to each other in the phase diagram and influence each other's
physical properties. The SO(5) theory unifies these two basic states of matter
by a symmetry principle and describes their rich phenomenology through a single
low energy effective model. In this paper, we review the framework of the SO(5)
theory, and its detailed comparison with numerical and experimental results.Comment: Review article. 81 page
Dynamics of an SO(5) symmetric ladder model
We discuss properties of an exactly SO(5) symmetric ladder model. In the
strong coupling limit we demonstrate how the SO(3)-symmetric description of
spin ladders in terms of bond Bosons can be upgraded to an SO(5)-symmetric
bond-Boson model, which provides a particularly simple example for the concept
of SO(5) symmetry. Based on this representation we show that antiferro-
magnetism on one hand and superconductivity on the other hand can be understood
as condensation of either magnetic or charged Bosons into an RVB vacuum. We
identify exact eigenstates of a finite cluster with general multiplets of the
SO(5) group, and present numerical results for the single particle spectra and
spin/charge correlation functions of the SO(5)-symmetric model and identify
`fingerprints' of SO(5) symmetry in these. In particluar we show that SO(5)
symmetry implies a `generalized rigid band behavior' of the photoemission
spectrum, i.e. spectra for the doped case are rigorously identical to spectra
for spin-polarized states at half-filling. We discuss the problem of adiabatic
continuity between the SO(5) symmetric ladder and the actual t-J ladder and
demonstrate the feasibility of a `Landau mapping' between the two models.Comment: Revtex-file, 16 pages with 15 eps-figures. Hardcopies of Figures (or
the entire manuscript) obtainable by e-mail request to
[email protected]
The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram
One central challenge in high- superconductivity (SC) is to derive a
detailed understanding for the specific role of the - and
- orbital degrees of freedom. In most theoretical studies an
effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics
is that of doping into a Mott-insulator, whereas the actual high- cuprates
are doped charge-transfer insulators. To shed light on the related question,
where the material-dependent physics enters, we compare the competing magnetic
and superconducting phases in the ground state, the single- and two-particle
excitations and, in particular, the pairing interaction and its dynamics in the
three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e.
the variational cluster approach (VCA), we find which frequencies are relevant
for pairing in the two models as a function of interaction strength and doping:
in the 3BH-models the interaction in the low- to optimal-doping regime is
dominated by retarded pairing due to low-energy spin fluctuations with
surprisingly little influence of inter-band (p-d charge) fluctuations. On the
other hand, in the 1BH-model, in addition a part comes from "high-energy"
excited states (Hubbard band), which may be identified with a non-retarded
contribution. We find these differences between a charge-transfer and a Mott
insulator to be renormalized away for the ground-state phase diagram of the
3BH- and 1BH-models, which are in close overall agreement, i.e. are
"universal". On the other hand, we expect the differences - and thus, the
material dependence to show up in the "non-universal" finite-T phase diagram
(-values).Comment: 17 pages, 9 figure