258 research outputs found

    Electromagnetic Response and Approximate SO(5) Symmetry in High-Tc Superconductors

    Full text link
    It has been proposed that the effective Hamiltonian describing high T_c superconductivity in cuprate materials has an approximate SO(5) symmetry relating the superconducting (SC) and antiferromagnetic (AF) phases of these systems. We show that robust consequences of this proposal are potentially large optical conductivities and Raman scattering rates in the AF phase, due to the electromagnetic response of the doubly-charged pseudo Goldstone bosons which must exist there. This provides strong constraints on the properties of the bosons, such as their mass gap and velocity.Comment: 4 pages, 3 figure

    Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

    Full text link
    We describe a general technique that allows to induce and control strong interaction between spin states of neighboring atoms in an optical lattice. We show that the properties of spin exchange interactions, such as magnitude, sign, and anisotropy can be designed by adjusting the optical potentials. We illustrate how this technique can be used to efficiently ``engineer'' quantum spin systems with desired properties, for specific examples ranging from scalable quantum computation to probing a model with non-trivial topological orders that supports exotic non-abelian anyonic excitations.Comment: 5 pages, 2 figures, revte

    Breakdown of the local density approximation in interacting systems of cold fermions in strongly anisotropic traps

    Full text link
    We consider spin-polarized mixtures of cold fermionic atoms on the BEC side of the Feshbach resonance. We demonstrate that a strongly anisotropic confining potential can give rise to a double-peak structure in the axial distribution of the density difference and a polarization-dependent aspect ratio of the minority species. Both phenomena appear as a result of the breakdown of the local density approximation for the phase-separated regime. We speculate on the implications of our findings for the unitary regime.Comment: Final published versio

    Antiferromagnetic noise correlations in optical lattices

    Full text link
    We analyze how noise correlations probed by time-of-flight (TOF) experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional (2D) and three-dimensional (3D) optical lattices. Combining analytical and quantum Monte Carlo (QMC) calculations using experimentally realistic parameters, we show that AF correlations can be detected for temperatures above and below the critical temperature for AF ordering. It is demonstrated that spin-resolved noise correlations yield important information about the spin ordering. Finally, we show how to extract the spin correlation length and the related critical exponent of the AF transition from the noise.Comment: 4 pages, 4 figure

    Collective phenomena in quasi-two-dimensional fermionic polar molecules: band renormalization and excitons

    Get PDF
    We theoretically analyze a quasi-two-dimensional system of fermionic polar molecules in a harmonic transverse confining potential. The renormalized energy bands are calculated by solving the Hartree-Fock equation numerically for various trap and dipolar interaction strengths. The inter-subband excitations of the system are studied in the conserving time-dependent Hartree-Fock (TDHF) approximation from the perspective of lattice modulation spectroscopy experiments. We find that the excitation spectrum consists of both inter-subband particle-hole excitation continuums and anti-bound excitons, arising from the anisotropic nature of dipolar interactions. The excitonic modes capture the majority of the spectral weight. We also evaluate the inter-subband transition rates in order to investigate the nature of the excitonic modes and find that they are anti-bound states formed from particle-hole excitations arising from several subbands. Our results indicate that the excitonic effects are present for interaction strengths and temperatures accessible in current experiments with polar molecules.Comment: 21 pages, 12 figure

    Canted ground state in artificial molecules at high magnetic fields

    Full text link
    We analyze the transitions that a magnetic field provokes in the ground state of an artificial homonuclear diatomic molecule. For that purpose, we have performed numerical diagonalizations for a double quantum dot around the regime of filling factor 2. We present phase diagrams in terms of tunneling and Zeeman couplings, and confinement strength. We identify a series of transitions from ferromagnetic to symmetric states through a set of canted states with antiferromagnetic couping between the two quantum dots

    Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ2 lattice gauge theories

    Get PDF
    From the standard model of particle physics to strongly correlated electrons, various physical settings are formulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical lattices provide a promising avenue to study these complex systems and unravel the underlying many-body physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically, we propose implementation of ℤ2 lattice gauge theories coupled to matter, reminiscent of theories previously introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated systems, with properties dictated by an interplay of dynamical matter and gauge fields

    Neutral skyrmion configurations in the low-energy effective theory of spinor condensate ferromagnets

    Full text link
    We study the low-energy effective theory of spinor condensate ferromagnets for the superfluid velocity and magnetization degrees of freedom. This effective theory describes the competition between spin stiffness and a long-ranged interaction between skyrmions, topological objects familiar from the theory of ordinary ferromagnets. We find exact solutions to the non-linear equations of motion describing neutral configurations of skyrmions and anti-skyrmions. These analytical solutions provide a simple physical picture for the origin of crystalline magnetic order in spinor condensate ferromagnets with dipolar interactions. We also point out the connections to effective theories for quantum Hall ferromagnets.Comment: 13 pages, 7 figure
    • …
    corecore