6 research outputs found
Science and technology requirements to explore caves in our Solar System
Research on planetary caves requires cross-planetary-body investigations spanning multiple disciplines, including geology, climatology, astrobiology, robotics, human exploration and operations. The community determined that a roadmap was needed to establish a common framework for planetary cave research. This white paper is our initial conception
Fundamental Science and Engineering Questions in Planetary Cave Exploration
32 pĂĄginas.- 3 figuras.- 2 tablas.- 260 referenciasNearly half a century ago, two papers postulated the likelihood of lunar lava tube caves using mathematical models. Today, armed with an array of orbiting and fly-by satellites and survey instrumentation, we have now acquired cave data across our solar system-including the identification of potential cave entrances on the Moon, Mars, and at least nine other planetary bodies. These discoveries gave rise to the study of planetary caves. To help advance this field, we leveraged the expertise of an interdisciplinary group to identify a strategy to explore caves beyond Earth. Focusing primarily on astrobiology, the cave environment, geology, robotics, instrumentation, and human exploration, our goal was to produce a framework to guide this subdiscipline through at least the next decade. To do this, we first assembled a list of 198 science and engineering questions. Then, through a series of social surveys, 114 scientists and engineers winnowed down the list to the top 53 highest priority questions. This exercise resulted in identifying emerging and crucial research areas that require robust development to ultimately support a robotic mission to a planetary cave-principally the Moon and/or Mars. With the necessary financial investment and institutional support, the research and technological development required to achieve these necessary advancements over the next decade are attainable. Subsequently, we will be positioned to robotically examine lunar caves and search for evidence of life within Martian caves; in turn, this will set the stage for human exploration and potential habitation of both the lunar and Martian subsurface.The following funding sources are recognized for supporting several of the contributing authors: Human Frontiers Science Program grant #RGY0066/2018 (for AAB), NASA Innovative Advanced Concepts Grant #80HQTR19C0034 (HJ, UYW, and WLW), and European Research Council, ERC Consolidator Grant #818602 (AGF), the Spanish Ministry of Science and Innovation (project PID2019-108672RJ-I00) and the "Ramon y Cajal" post-doctoral contract (grant #RYC2019-026885-I (AZM)), and Contract #80NM0018D0004 between the Jet Propulsion Laboratory, California Institute of Technology and the National Aeronautics and Space Administration (AA, MJM, KU, and LK).Peer reviewe
A roadmap for planetary caves science and exploration
2 pĂĄginas.- 1 figura.- 16 referenciasTo the Editor â 2021 is the International Year of Caves and Karst. To honour this occasion, we wish to emphasize the vast potential embodied in planetary subsurfaces. While researchers have pondered the possibility of extraterrestrial caves for more than 50 years, we have now entered the incipient phase of planetary caves exploration....Peer reviewe
Cyanobacterial weathering in warming periglacial sediments: implications for nutrient cycling and potential biosignatures
The cryosphere hosts a widespread microbial community, yet microbial influences on silicate weathering have been historically neglected in cold-arid deserts. Here we investigate bioweathering by a cold-tolerant cyanobacteria (Leptolyngbya glacialis) via laboratory experiments using glaciofluvial drift sediments at 12ÂșC, analogous to predicted future permafrost surface temperatures. Our results show 3-fold enhanced Si weathering rates in pre-weathered, mixed-lithology Antarctic biotic reactors compared to abiotic controls, indicating significant influence of microbial life on weathering. While biotic and abiotic weathering rates are similar in Icelandic sediments, neo-formed clay and Fe-(oxy)hydroxide minerals observed in association with biofilms in biotic reactors are common on Icelandic mafic minerals, similar to features observed in unprocessed Antarctic drifts. This suggests that microbes enhance weathering in systems where they must scavenge for nutrients that arenât easily liberated via abiotic pathways; potential biosignatures may form in nutrient-rich systems as well. In both sediment types we also observed up to 4-fold higher bicarbonate concentrations in biotic reactors relative to abiotic reactors, indicating that, as warming occurs, psychrotolerant biota will enhance bicarbonate flux to the oceans, thus stimulating carbonate deposition and providing a negative feedback to rising atmospheric CO2.NSF grant #1543344Ye
Science and technology requirements to explore caves in our Solar System
Science and technology
requirements to explore
caves in our Solar Syste