568 research outputs found

    Generation of unipolar half-cycle pulse via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer

    Full text link
    We present a significantly different reflection process from an optically thin flat metallic or dielectric layer and propose a strikingly simple method to form approximately unipolar half-cycle optical pulses via reflection of a single-cycle optical pulse. Unipolar pulses in reflection arise due to specifics of effectively one-dimensional pulse propagation. Namely, we show that in considered system the field emitted by a flat medium layer is proportional to the velocity of oscillating medium charges instead of their acceleration as it is usually the case. When the single-cycle pulse interacts with linear optical medium, the oscillation velocity of medium charges can be then forced to keep constant sign throughout the pulse duration. Our results essentially differ from the direct mirror reflection and suggest a possibility of unusual transformations of the few-cycle light pulses in linear optical systems

    All-optical attoclock: accessing exahertz dynamics of optical tunnelling through terahertz emission

    Full text link
    The debate regarding attosecond dynamics of optical tunneling has so far been focused on time delays associated with electron motion through the potential barrier created by intense ionizing laser fields and the atomic core. Compelling theoretical and experimental arguments have been put forward to advocate the polar opposite views, confirming or refuting the presence of tunnelling time delays. Yet, such delay, whether present or ot, is but a single quantity characterizing the tunnelling wavepacket; the underlying dynamics are richer. Here we propose to complement photo-electron detection with detecting light, focusing on the so-called Brunel adiation -- the near-instantaneous nonlinear optical response triggered by the tunnelling event. Using the combination of single-color and two-color driving fields, we determine not only the ionization delays, but also the re-shaping of the tunnelling wavepacket as it emerges from the classically forbidden region. Our work introduces a new type of attoclock for optical tunnelling, one that is based on measuring light rather than photo-electrons. All-optical detection paves the way to time-resolving multiphoton transitions across bandgaps in solids, on the attosecond time-scale

    OptFROG — Analytic signal spectrograms with optimized time–frequency resolution

    Get PDF
    A Python package for the calculation of spectrograms with optimized time and frequency resolution for application in the analysis of numerical simulations on ultrashort pulse propagation is presented. Gabor’s uncertainty principle prevents both resolutions from being optimal simultaneously for a given window function employed in the underlying short-time Fourier analysis. Our aim is to yield a time–frequency representation of the input signal with marginals that represent the original intensities per unit time and frequency similarly well. As a use-case, we demonstrate the implemented functionality for the analysis of simulations on ultrashort pulse propagation in a nonlinear waveguide

    Crossover from two-frequency pulse compounds to escaping solitons

    Get PDF
    The nonlinear interaction of copropagating optical solitons enables a large variety of intriguing bound-states of light. We here investigate the interaction dynamics of two initially superimposed fundamental solitons at distinctly different frequencies. Both pulses are located in distinct domains of anomalous dispersion, separated by an interjacent domain of normal dispersion, so that group velocity matching can be achieved despite a vast frequency gap. We demonstrate the existence of two regions with different dynamical behavior. For small velocity mismatch we observe a domain in which a single heteronuclear pulse compound is formed, which is distinct from the usual concept of soliton molecules. The binding mechanism is realized by the mutual cross phase modulation of the interacting pulses. For large velocity mismatch both pulses escape their mutual binding and move away from each other. The crossover phase between these two cases exhibits two localized states with different velocity, consisting of a strong trapping pulse and weak trapped pulse. We detail a simplified theoretical approach which accurately estimates the parameter range in which compound states are formed. This trapping-to-escape transition allows to study the limits of pulse-bonding as a fundamental phenomenon in nonlinear optics, opening up new perspectives for the all-optical manipulation of light by light

    Two-color soliton meta-atoms and molecules

    Full text link
    We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schr\"odinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that z-periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation

    (Invited) Two-color soliton meta-atoms and molecules

    Get PDF
    We present a detailed overview of the physics of two-color soliton molecules in nonlinear waveguides, i.e. bound states of localized optical pulses which are held together due to an incoherent interaction mechanism. The mutual confinement, or trapping, of the subpulses, which leads to a stable propagation of the pulse compound, is enabled by the nonlinear Kerr effect. Special attention is paid to the description of the binding mechanism in terms of attractive potential wells, induced by the refractive index changes of the subpulses, exerted on one another through cross-phase modulation. Specifically, we discuss nonlinear-photonics meta atoms, given by pulse compounds consisting of a strong trapping pulse and a weak trapped pulse, for which trapped states of low intensity are determined by a Schrödinger-type eigenproblem. We discuss the rich dynamical behavior of such meta-atoms, demonstrating that an increase of the group-velocity mismatch of both subpulses leads to an ionization-like trapping-to-escape transition. We further demonstrate that if both constituent pulses are of similar amplitude, molecule-like bound-states are formed. We show that -periodic amplitude variations permit a coupling of these pulse compound to dispersive waves, resulting in the resonant emission of Kushi-comb-like multi-frequency radiation

    Recursive Partitioning Analysis of Mediastinal N2 Lymph Node Involvement with Selected Biological Markers in Operable Non-small Cell Lung Cancer: A Correlative Study

    Get PDF
    Background: Expressions of various biomarkers in non-small cell lung cancer (NSCLC) have been linked with the prognosis and involvement of mediastinal lymph nodes.Methods: In this study, we utilized recursive partitioning analysis (RPA) by using P53, c-erb-B2, and P-glycoprotein (PGP) expressions evaluated by immunohistochemistry to estimate retrospectively the likelihood of the occult N2 mediastinal lymph node involvement in patients with operable NSCLC.Results: In univariate tests, immunohistochemical staining of the primary tumor for these 3 markers in 61 patients undergoing surgery revealed no direct relationship with the N2 involvement. However, RPA demonstrated in patients aged 75 and with 4 mediastinal lymph nodes removed that, high PGP expression frequency (20%) predicted an increased likelihood of the N2 involvement (46.7%, R2 = 0.25). Univariate nominal logistic regression analysis revealed that RPA group affiliation, and the number of mediastinal lymph nodes resected (logarithmic transformation) were associated with the metastasis to N2 lymph nodes (χ2 = 17.59, p = 0.0005, and χ2 = 2.40, p = 0.0654, respectively). Multivariate analysis confirmed that only RPA group affiliation predicted the N2 involvement (χ2 = 14.63, p = 0.0022).Conclusion: This study shows for the first time that PGP expression of the primary tumor may help to predict the occult N2 mediastinal lymph node involvement in NSCLC. Thus, further research is required to understand whether PGP expression may aid in the decision process for preoperative mediastinoscopy

    Two-color pulse compounds in waveguides with a zero-nonlinearity point

    Full text link
    We study incoherently coupled two-frequency pulse compounds in waveguides with single zero-dispersion and zero-nonlinearity points. In such waveguides, supported by a negative nonlinearity, soliton dynamics can be obtained even in domains of normal dispersion. We demonstrate trapping of weak pulses by solitary-wave wells, forming nonlinear-photonics meta-atoms, and molecule-like bound-states of pulses. We study the impact of Raman effect on these pulse compounds, finding that, depending on the precise subpulse configuration, they decelerate, accelerate, or are completely unaffected. Our results extend the range of systems in which two-frequency pulse compounds can be expected to exist and demonstrate further unique and unexpected behavior
    corecore