10 research outputs found

    Multiscale directed self-assembly of composite microgels in complex electric fields

    No full text
    This study explored the application of localized electric fields for reversible directed self-assembly of colloidal particles in 3 dimensions. Electric field microgradients, arising from the use of micro-patterned electrodes, were utilized to direct the localization and self-assembly of polarizable (charged) particles resulting from a combination of dielectrophoretic and multipolar forces. Deionized dispersions of spherical and ellipsoidal core-shell microgels were employed for investigating their assembly under an external alternating electric field. We demonstrated that the frequency of the field allowed for an exquisite control over the localization of the particles and their self-assembled structures near the electrodes. We extended this approach to concentrated binary dispersions consisting of polarizable and less polarizable composite microgels. Furthermore, we utilized the thermosensitivity of the microgels to adjust the effective volume fraction and the dynamics of the system, which provided the possibility to dynamically “solidify” the assembly of the field-responsive particles by a temperature quench from their initial fluid state into an arrested crystalline state. Reversible solidification enables us to re-write/reconstruct various 3 dimensional assemblies by varying the applied field frequency

    Electric Field Assembly of Colloidal Superstructures

    No full text

    Colloidal shuttles for programmable cargo transport

    No full text
    The active transport of cargo molecules within cells is essential for life. Developing synthetic strategies for cargo control in living or inanimate thermal systems could lead to powerful tools to manipulate chemical gradients at the microscale and thus drive processes out of equilibrium to realize work. Here we demonstrate a colloidal analog of the complex biological shuttles responsible for molecular trafficking in cells. Our colloidal shuttles consist of magneto-dielectric particles that are loaded with cargo particles or living cells through size-selective dielectrophoretic trapping using electrical fields. The loaded colloidal shuttle can be transported with magnetic field gradients before cargo is released at the target location by switching off the electrical field. Such spatiotemporal control over the distribution of chemically active cargo in a reversible fashion can be potentially exploited for fundamental biological research or for the development of novel technologies for advanced cell culturing, drug discovery and medical diagnosis.ISSN:2041-172

    Kirigami Makes a Soft Magnetic Sheet Crawl

    No full text
    Abstract Limbless crawling on land requires breaking symmetry of the friction with the ground and exploiting an actuation mechanism to generate propulsive forces. Here, kirigami cuts are introduced into a soft magnetic sheet that allow to achieve effective crawling of untethered soft robots upon application of a rotating magnetic field. Bidirectional locomotion is achieved under clockwise and counterclockwise rotating magnetic fields with distinct locomotion patterns and crawling speed in forward and backward propulsions. The crawling and deformation profiles of the robot are experimentally characterized and combined with detailed multiphysics numerical simulations to extract locomotion mechanisms in both directions. It is shown that by changing the shape of the cuts and orientation of the magnet the robot can be steered, and if combined with translational motion of the magnet, complex crawling paths are programed. The proposed magnetic kirigami robot offers a simple approach to developing untethered soft robots with programmable motion

    Magnetic propulsion of colloidal microrollers controlled by electrically modulated friction

    Get PDF
    Precise control over the motion of magnetically responsive particles in fluidic chambers is important for probing and manipulating tasks in prospective microrobotic and bio-analytical platforms. We have previously exploited such colloids as shuttles for the microscale manipulation of objects. Here, we study the rolling motion of magnetically driven Janus colloids on solid substrates under the influence of an orthogonal external electric field. Electrically induced attractive interactions were used to tune the load on the Janus colloid and thereby the friction with the underlying substrate, leading to control over the forward velocity of the particle. Our experimental data suggest that the frictional coupling required to achieve translation, transitions from a hydrodynamic regime to one of mixed contact coupling with increasing load force. Based on this insight, we show that our colloidal microrobots can probe the local friction coefficient of various solid surfaces, which makes them potentially useful as tribological microsensors. Lastly, we precisely manipulate porous cargos using our colloidal rollers, a feat that holds promise for bio-analytical applications

    Amphibious Transport of Fluids and Solids by Soft Magnetic Carpets

    Get PDF
    One of the major challenges in modern robotics is controlling micromanipulation by active and adaptive materials. In the respiratory system, such actuation enables pathogen clearance by means of motile cilia. While various types of artificial cilia have been engineered recently, they often involve complex manufacturing protocols and focus on transporting liquids only. Here, soft magnetic carpets are created via an easy self-assembly route based on the Rosensweig instability. These carpets can transport not only liquids but also solid objects that are larger and heavier than the artificial cilia, using a crowd-surfing effect.This amphibious transportation is locally and reconfigurably tunable by simple micromagnets or advanced programmable magnetic fields with a high degree of spatial resolution. Two surprising cargo reversal effects are identified and modeled due to collective ciliary motion and nontrivial elastohydrodynamics. While the active carpets are generally applicable to integrated control systems for transport, mixing, and sorting, these effects can also be exploited for microfluidic viscosimetry and elastometry

    Amphibious Transport of Fluids and Solids by Soft Magnetic Carpets

    Get PDF
    One of the major challenges in modern robotics is controlling micromanipulation by active and adaptive materials. In the respiratory system, such actuation enables pathogen clearance by means of motile cilia. While various types of artificial cilia have been engineered recently, they often involve complex manufacturing protocols and focus on transporting liquids only. Here, soft magnetic carpets are created via an easy self-assembly route based on the Rosensweig instability. These carpets can transport not only liquids but also solid objects that are larger and heavier than the artificial cilia, using a crowd-surfing effect.This amphibious transportation is locally and reconfigurably tunable by simple micromagnets or advanced programmable magnetic fields with a high degree of spatial resolution. Two surprising cargo reversal effects are identified and modeled due to collective ciliary motion and nontrivial elastohydrodynamics. While the active carpets are generally applicable to integrated control systems for transport, mixing, and sorting, these effects can also be exploited for microfluidic viscosimetry and elastometry.ISSN:2198-384

    Magnetic propulsion of colloidal microrollers controlled by electrically modulated friction

    No full text
    Precise control over the motion of magnetically responsive particles in fluidic chambers is important for probing and manipulating tasks in prospective microrobotic and bio-analytical platforms. We have previously exploited such colloids as shuttles for the microscale manipulation of objects. Here, we study the rolling motion of magnetically driven Janus colloids on solid substrates under the influence of an orthogonal external electric field. Electrically induced attractive interactions were used to tune the load on the Janus colloid and thereby the friction with the underlying substrate, leading to control over the forward velocity of the particle. Our experimental data suggest that the frictional coupling required to achieve translation, transitions from a hydrodynamic regime to one of mixed contact coupling with increasing load force. Based on this insight, we show that our colloidal microrobots can probe the local friction coefficient of various solid surfaces, which makes them potentially useful as tribological microsensors. Lastly, we precisely manipulate porous cargos using our colloidal rollers, a feat that holds promise for bio-analytical applications
    corecore