10,688 research outputs found
A framework for network RTK data processing based on grid computing
Real-Time Kinematic (RTK) positioning is a technique used to provide precise positioning services at centimetre accuracy level in the context of Global Navigation Satellite Systems (GNSS). While a Network-based RTK (N-RTK) system involves multiple continuously operating reference stations (CORS), the simplest form of a NRTK system is a single-base RTK. In Australia there are several NRTK services operating in different states and over 1000 single-base RTK systems to support precise positioning applications for surveying, mining, agriculture, and civil construction in regional areas. Additionally, future generation GNSS constellations, including modernised GPS, Galileo, GLONASS, and Compass, with multiple frequencies have been either developed or will become fully operational in the next decade.
A trend of future development of RTK systems is to make use of various isolated operating network and single-base RTK systems and multiple GNSS constellations for extended service coverage and improved performance. Several computational challenges have been identified for future NRTK services including:
• Multiple GNSS constellations and multiple frequencies
• Large scale, wide area NRTK services with a network of networks
• Complex computation algorithms and processes
• Greater part of positioning processes shifting from user end to network centre with the ability to cope with hundreds of simultaneous users’ requests (reverse RTK)
There are two major requirements for NRTK data processing based on the four challenges faced by future NRTK systems, expandable computing power and scalable data sharing/transferring capability. This research explores new approaches to address these future NRTK challenges and requirements using the Grid Computing facility, in particular for large data processing burdens and complex computation algorithms. A Grid Computing based NRTK framework is proposed in this research, which is a layered framework consisting of: 1) Client layer with the form of Grid portal; 2) Service layer; 3) Execution layer. The user’s request is passed through these layers, and scheduled to different Grid nodes in the network infrastructure.
A proof-of-concept demonstration for the proposed framework is performed in a five-node Grid environment at QUT and also Grid Australia. The Networked Transport of RTCM via Internet Protocol (Ntrip) open source software is adopted to download real-time RTCM data from multiple reference stations through the Internet, followed by job scheduling and simplified RTK computing. The system performance has been analysed and the results have preliminarily demonstrated the concepts and functionality of the new NRTK framework based on Grid Computing, whilst some aspects of the performance of the system are yet to be improved in future work
The First and Final Poetry of Joanne Deming
This thesis is a culmination of my development as a writer at the University of New Hampshire. It explores the idea of the self and how it applies to writing. Because I am legally changing my name after graduation, these poem have come to represent Joanne Deming as a writer before she becomes Joanne Wood
Protecting Natural Resources - Forever: The Obligations of State Officials to Uphold Forever Constitutional Provisions
This Article analyzes the attacks on a state constitutional conservation lands program since the election of a governor and state legislature opposed to environmental regulation in 2010 – a precursor to current happenings at the federal level under the Trump administration. Former Florida Governor Rick Scott and his administration have spent an average of over $40 million a year in taxpayer money to defend and, in most cases, pay judgments, in lawsuits challenging mandates of the Florida Constitution.
I examine this issue of ignoring or deliberately violating constitutional requirements through the lens of state constitutional provisions that protect natural resources, focusing on Florida and New York. Both states have explicit and specific protections for conservation and forest lands, which differ from constitutional provisions in other states that establish policies and delegate implementation authority to state legislatures. New York adopted its Forever Wild constitutional provision in 1894, and the text of that provision has remained intact, despite attempts to amend the provision or to pass legislation that would violate it.
In Florida, there are two constitutional provisions that protect conservation lands under the Florida Forever program. This program has widespread public support and, at its inception, had non-partisan political support as well, until Rick Scott was elected to be governor. During his tenure, there have been repeated attempts to sell or trade conservation lands protected under the Florida Constitution. Instead of spending taxpayer money to defend violations of these constitutional provisions, Florida state officials should uphold the oaths they made to “support, protect, and defend” the state constitution. Natural resource protections in the Florida and New York constitutions provide noteworthy guidance for other states to initiate constitutional amendments for similar protections. In addition, there should be personal repercussions for state officials who willfully violate these state constitutional commands and restitution of taxpayer money spent to defend unlawful behavior
Studies of thermal wave phenomena on the Jovian planets
Ground based and Voyager observations of Jupiter have provided evidence that the tropospheric temperature shows global scale longitudinal variations which are often wavelike in character. Voyager data are reported to exhibit the presence of slowly moving thermal features, wherein the jovian tropospheric temperature patterns are not advected by the equatorial zonal winds, but are not found to rotate at the System III (interior) rate. Ground based data in a broad infrared band (8 to 13 micron) show a wavelike structure whose amplitude and spatial scale are similar to the reported properties of the slowly moving thermal features. This study is directed toward obtaining additional ground based data in infrared spectral bands whose contribution functions are optimized for specific atmospheric regions (tropospheric at 20 micron, and stratospheric at 7.8 micron), in order to confirm the previous results, and to identify the nature and physical significance of wavelike longitudinal temperature fluctuations on the Jovian planets. A 2-D infrared array detector and low resolution cryogenic grating spectrometer is being adapted to obtain maps in approx. 2/cm bandpasses
Spectroscopic planetary detection
One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved
Polymerase-endonuclease amplification reaction for large-scale enzymatic production of antisense oligonucleotide
Synthetic oligonucleotides are contaminated with highly homologous failure sequences. Oligonucleotide synthesis is difficult to scale up because it requires expensive equipments, hazardous chemicals, and tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR), for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI) cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves >100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation, so it has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs
Studies of thermal wave phenomena on the Jovian planets
Ground-based and Voyager observations of Jupiter provided evidence that the tropospheric temperature shows global-scale longitudinal variations which are often wavelike in character. The investigation is presented which is directed toward obtaining additional ground-based data in IR spectral bands whose contribution functions are optimized for specific atmospheric regions, in order to confirm the previous results, and to identify the nature and physical significance of wavelike longitudinal temperature fluctuations on the Jovian planets
Spectroscopic planetary detection
One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approximately 10 meters/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar-type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this investigation is to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight are made in the near infrared (approximately 2 micrometer), using the Kitt Peak McMath Fourier transform spectrometer, with an N2O gas absorption cell for calibration. Researchers currently achieve an accuracy of approximately 5 meters/sec. Solar rotation velocities vary by plus or minus 2000 meters/sec across the solar disk, and imperfect optical integration of these velocities is the principal source of error. We have been monitoring the apparent velocity of integrated sunlight since 1983. They initially saw a decrease of approximately 30 meters/sec in the integrated light velocity from 1983 through 1985, but in 1987 to 1988 the integrated light velocity returned to its 1983 level. It is too early to say whether these changes are solar-cycle related. Although the FTS, unlike a slit spectrograph, has a large field of view, researchers are always looking for ways to improve the optical integration of the solar disk. They recently made an improvement in the method used to optically collimate the FTS, and this has reduced the error level, eliminating some systematic effects seen earlier
- …