74 research outputs found

    Incorporating physiology into species distribution models moderates the projected impact of warming on Mediterranean marine species.

    Get PDF
    Species distribution models (SDMs) correlate species occurrences with environmental predictors, and can be used to forecast distributions under future climates. SDMs have been criticized for not explicitly including the physiological processes underlying the species response to the environment. Recently, new methods have been suggested to combine SDMs with physiological estimates of performance (physiology-SDMs). In this study, we compare SDM and physiology-SDM predictions for select marine species in the Mediterranean Sea, a region subjected to exceptionally rapid climate change. We focused on six species and created physiology-SDMs that incorporate physiological thermal performance curves from experimental data with species occurrence records. We then contrasted projections of SDMs and physiology-SDMs under future climate (year 2100) for the entire Mediterranean Sea, and particularly the ‘warm’ trailing edge in the Levant region. Across the Mediterranean, we found cross-validation model performance to be similar for regular SDMs and physiology-SDMs. However, we also show that for around half the species the physiology-SDMs substantially outperform regular SDM in the warm Levant. Moreover, for all species the uncertainty associated with the coefficients estimated from the physiology-SDMs were much lower than in the regular SDMs. Under future climate, we find that both SDMs and physiology-SDMs showed similar patterns, with species predicted to shift their distribution north-west in accordance with warming sea temperatures. However, for the physiology-SDMs predicted distributional changes are more moderate than those predicted by regular SDMs. We conclude, that while physiology-SDM predictions generally agree with the regular SDMs, incorporation of the physiological data led to less extreme range shift forecasts. The results suggest that climate-induced range shifts may be less drastic than previously predicted, and thus most species are unlikely to completely disappear with warming climate. Taken together, the findings emphasize that physiological experimental data can provide valuable supplemental information to predict range shifts of marine species

    Dimming sand halos on coral reefs in Dominica: new expansion corridors for the invasive seagrass Halophila stipulacea.

    Get PDF

    First report of the Taiwan sardinella Sardinella hualiensis (Clupeiformes: Clupeidae) in the Philippines.

    Get PDF
    A range expansion of the Taiwan sardinella Sardinella hualiensis to the Philippines is reported. The data suggested that the southern translocation of S. hualiensis occurred across oceanographic features that are typically barriers to small, pelagic fish dispersal. With this addition, the Philippines is among the most diverse countries for Sardinella biodiversity in the world, second only to Indi

    Rapidly spreading seagrass invades the Caribbean with unknown ecological consequences.

    Get PDF

    Biology and Ecology of sardines in the Philippines: A review.

    Get PDF
    Sardines (Clupeidae) make up a substantial proportion of the fish catch across the Philippines and consequently are the most accessible source of animal protein for millions of Filipinos. Further, this fishery is an economic engine providing thousands of jobs and generating revenue at the individual, municipal, and national levels. Ecologically, sardines are basally positioned in a food web that supports pelagic tuna and mackerel, as well as numerous sea birds and marine mammals. Philippine sardine biodiversity is among the highest in the world and includes the only known freshwater sardine species. The ecological and economic value of sardines alone warrant further research; however the looming effects of global climate change and an ever-growing population in the Philippines increase the urgency of this research. Signs of a collapsing sardine stock, reported earlier this decade, have promoted investigations of their abundance, viability, and long-term integrity as a fishery. Furthermore, the historical collapse of small pelagic fisheries elsewhere in the world may serve as guides in mitigating a similar fate in the Philippines. Our goals here are to a) review the current understanding of sardines in the Philippines; b) provide a snapshot of their status using the most recent data available; and c) highlight where the greatest concerns are and how new research may aid in creating a sustainable and secure sardine fishery

    Delivering on seafood traceability under the new U.S. import monitoring program.

    Get PDF
    The United States is the world’s largest fish importer. Recent reports, however, indicate that 25–30% of wild-caught seafood imported into the US is illegally caught, heightening concerns over the country’s significant role in driving Illegal, Unreported, and Unregulated (IUU) fishing. In January 2017, NOAA enacted the Seafood Import Monitoring Program in an effort to combat IUU fishing through mandating improved seafood traceability requirements. This program requires reporting of fisheries data from harvest to arrival at the US border. Given the role of the US as a major global importer of seafood, this regulation could be a transformative action on fisheries worldwide if implementation includes two key components—(1) applying best available and most appropriate technologies and (2) building monitoring and enforcement capacity among trading nations. This paper provides insightful commentary on the potential for this US policy to lead by example and improve an essential natural resource that over a billion people worldwide depend on for nutrition and livelihoods

    Evolution of the freshwater sardinella, Sardinella tawilis (Clupeiformes: Clupeidae), in Lake Taal, Philippines and phylogeography of its sister-species, Sardinella hualiensis.

    Get PDF
    We identify the sister species of the world\u27s only freshwater sardinella, Sardinella tawilis (Herre, 1927) of Taal Lake, Philippines as the morphologically-similar marine Taiwanese sardinella Sardinella hualiensis (Chu and Tsai, 1958). Evidence of incomplete lineage sorting and a species tree derived from three mitochondrial genes and one nuclear gene indicate that S. tawilis diverged from S. hualiensis in the late Pleistocene. Neutrality tests, mismatch distribution analysis, sequence diversity indices, and species tree analysis indicate populations of both species have long been stable and that the divergence between these two lineages occurred prior to the putative 18th century formation of Taal Lake

    RE: eDNA to identify rare species in fisheries by-catch.

    Get PDF

    Advancing biodiversity research in developing countries: the need for changing paradigms

    Get PDF
    The world is in the midst of a biodiversity crisis, threatening essential goods and services on which humanity depends. While there is an urgent need globally for biodiversity research, growing obstacles are severely limiting biodiversity research throughout the developing world, particularly in Southeast Asia. Facilities, funding, and expertise are often limited throughout this region, reducing the capacity for local biodiversity research. Although western scientists generally have more expertise and capacity, international research has sometimes been exploitative “parachute science,” creating a culture of suspicion and mistrust. These issues, combined with misplaced fears of biopiracy, have resulted in severe roadblocks to biodiversity research in the very countries that need it the most. Here, we present an overview of challenges to biodiversity research and case studies that provide productive models for advancing biodiversity research in developing countries. Key to success is integration of research and education, a model that fosters sustained collaboration by focusing on the process of conducting biodiversity research as well as research results. This model simultaneously expands biodiversity research capacity while building trust across national borders. It is critical that developing countries enact policies that protect their biodiversity capital without shutting down international and local biodiversity research that is essential to achieve the long-term sustainability of biodiversity, promoting food security and economic development

    The distribution and size of benthic marine habitats in Dominica, Lesser Antilles.

    Get PDF
    Surveys of benthic marine habitats encompassing 1 814.7ha and lining 90% of Dominica’s shoreline were carried out to build the first composite picture of the distribution and size of the island’s near-shore sublittoral habitats, and the epibenthic communities they harbor. Field survey sites covered areas ranging from 1 425 to 29.6ha, lining the shore in bands ranging between 50 and 250m in width, in waters no deeper than 30m. Thus a total of 755ha of benthos were surveyed in October and November of 2007. The benthic habitat composition of an additional 1 059.7ha was inferred with the help of unpublished data and satellite imagery. Seagrass beds were the most widespread organism-built habitat type with 265ha. Coral reefs covered 72.2ha. Both of these habitats were predominantly established along the West and North coasts, which included the island’s most habitatdiverse regions. Rocky environments (911.5ha) dominated the East and South coast and together with sandy areas (566ha) constituted 81% of the island’s marine benthos. It is apparent that seagrass beds, which include four native and one invasive seagrass species, had not been surveyed as previous distribution reports could not be confirmed. Similarly, the benthic cover of Dominica’s coral reefs is evidently far below the previously reported 7 000ha. Such discrepancies highlight the advantage of environmental assessments based on field surveys and systematic data compilation, particularly in cases like Dominica where a narrow island shelf stages marginal marine resources in spatial proximity to each other and human settlements. This study has demonstrated how low-tech field methods can be applied on an island-wide scale to build an inventory of marine resources in the form of habitat maps and data repositories publicly accessible for future use. In the absence of such efforts, the development of conservation measures and status reports will remain ill founded
    corecore