25 research outputs found

    Multichannel Diffuse Optical Raman Tomography for Bone Characterization In Vivo: a Phantom Study

    Get PDF
    Raman spectroscopy is used to gather information on the mineral and organic components of bone tissue to analyze their composition. By measuring the Raman signal of bone through spatially offset Raman spectroscopy the health of the bone can be determined. We’ve customized a system with 8 collection channels that consist of individual fibers, which are coupled to separate spectrometers and cooled CCDs. This parallel detection system was used to scan gelatin phantoms with Teflon inclusions of two sizes. Raman signals were decoupled from the autofluorescence background using channel specific polynomial fitting. Images with high contrast to background ratios of Raman yield and accurate spatial resolution were recovered using a model-based diffuse tomography approach

    Next-Generation Raman tomography Instrument for Non-Invasive In Vivo Bone Imaging

    Get PDF
    Combining diffuse optical tomography methods with Raman spectroscopy of tissue provides the ability for in vivo measurements of chemical and molecular characteristics, which have the potential for being useful in diagnostic imaging. In this study a system for Raman tomography was developed and tested. A third generation microCT coupled system was developed to combine 10 detection fibers and 5 excitation fibers with laser line filtering and a Cytop reference signal. Phantom measurements of hydroxyapatite concentrations from 50 to 300 mg/ml had a linear response. Fiber placement and experiment design was optimized using cadaver animals with live animal measurements acquired to validate the systems capabilities. Promising results from the initial animal experiments presented here, pave the way for a study of longitudinal measurements during fracture healing and the scaling of the Raman tomography system towards human measurements

    Oxygen Tomography by Čerenkov-Excited Phosphorescence during External Beam Irradiation

    Get PDF
    The efficacy of radiation therapy depends strongly on tumor oxygenation during irradiation. However, current techniques to measure this parameter in vivo do not facilitate routine monitoring in patients. Herein, we demonstrate a noninvasive method for tomographic imaging of oxygen partial pressure (pO2 ) in deep tissue using the phosphorescence decay of an oxygen-sensitive probe excited by Čerenkov radiation induced by external beam radiotherapy. Tissue-simulating scattering phantoms (60 mm diameter with a 20 mm anomaly) containing platinum(II)-G4 (PtG4), a dendritic porphyrin-based phosphor, whose phosphorescence is quenched in the presence of oxygen, were irradiated with a clinical linear accelerator. The emitted phosphorescence was measured at various positions on the phantom boundary using a spectrograph coupled to an intensified charge-coupled device (ICCD). At each position, PtG4 phosphorescence decay curves were measured by synchronizing the ICCD to the linear accelerator pulses. Tomographic images of phosphorescence yield and lifetime were recovered for phantoms with homogenous PtG4 concentrations and heterogeneous pO2 . Since PtG4 lifetime is strongly and predictably dependent on pO 2 through the Stern-Volmer relationship, tomographic images of pO 2 were also reported, and showed excellent agreement with independent oxygenation measurements. Translating this approach to the clinic could facilitate direct sensing of pO2 during radiotherapy

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore