2 research outputs found

    Spectral Properties of Single Crystals of Synthetic Diamond

    Get PDF
    The half-width of the spectrum of Raman scattering (RS) of the first order of a diamond single crystal grown in a nickel-free system containing nitrogen getters is identical to all growth sectors (1.69 ± 0.02 cm−1). The sectorial inhomogeneity is not reflected in the transmission spectra and birefringence of this crystal. The nitrogen concentration is 4⋅1017 cm−3. For different growth sectors of the diamond crystal grown in the Ni–Fe–C system, the half-width of the Raman line varies from 1.74 to 2.08 cm−1, differences in the transmission spectra and birefringence are observed, and photoluminescence is revealed. The concentration of nitrogen in the growth sectors {001} is 1.6⋅1019 cm−3, the content of nickel is estimated to be at a level of 1019 cm−3, and the content of nitrogen in the {111} sectors is 4⋅1019 cm−3

    Spectral Properties of Single Crystals of Synthetic Diamond

    No full text
    The half-width of the spectrum of Raman scattering (RS) of the first order of a diamond single crystal grown in a nickel-free system containing nitrogen getters is identical to all growth sectors (1.69 ± 0.02 cm−1). The sectorial inhomogeneity is not reflected in the transmission spectra and birefringence of this crystal. The nitrogen concentration is 4⋅1017 cm−3. For different growth sectors of the diamond crystal grown in the Ni–Fe–C system, the half-width of the Raman line varies from 1.74 to 2.08 cm−1, differences in the transmission spectra and birefringence are observed, and photoluminescence is revealed. The concentration of nitrogen in the growth sectors {001} is 1.6⋅1019 cm−3, the content of nickel is estimated to be at a level of 1019 cm−3, and the content of nitrogen in the {111} sectors is 4⋅1019 cm−3
    corecore