17 research outputs found

    Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes

    Get PDF
    AbstractLeader peptidase is an integral membrane protein of E. coli and it catalyses the removal of most signal peptides from translocated precursor proteins. In this study it is shown that when the transmembrane anchors are removed in vivo, the remaining catalytic domain can bind to inner and outer membranes of E. coli. Furthermore, the purified catalytic domain binds to inner membrane vesicles and vesicles composed of purified inner membrane lipids with comparable efficiency. It is shown that the interaction is caused by penetration of a part of the catalytic domain between the lipids. Penetration is mediated by phosphatidylethanolamine, the most abundant lipid in E. coli, and does not seem to depend on electrostatic interactions. A hydrophobic segment around the catalytically important residue serine 90 is required for the interaction with membranes

    Aerobic sn-glycerol-3-phosphate dehydrogenase from Escherichia coli binds to the cytoplasmic membrane through an amphipathic alpha-helix.

    No full text
    sn-Glycerol-3-phosphate dehydrogenase (GlpD) from Escherichia coli is a peripheral membrane enzyme involved in respiratory electron transfer. For it to display its enzymic activity, binding to the inner membrane is required. The way the enzyme interacts with the membrane and how this controls activity has not been elucidated. In the present study we provide evidence for direct protein-lipid interaction. Using the monolayer technique, we observed insertion of GlpD into lipid monolayers with a clear preference for anionic phospholipids. GlpD variants with point mutations in their predicted amphipathic helices showed a decreased ability to penetrate anionic phospholipid monolayers. From these data we propose that membrane binding of GlpD occurs by insertion of an amphipathic helix into the acyl-chain region of lipids mediated by negatively charged phospholipids

    The C-Terminal Region of Nisin Is Responsible for the Initial Interaction of Nisin with the Target Membrane

    Get PDF
    The interaction of nisin Z and a nisin Z mutant carrying a negative charge in the C-terminus ([Glu-32]-nisin Z) with anionic lipids was characterized in model membrane systems, and bacterial membrane systems. We focused on three possible steps in the mode of action of nisin, i.e., binding, insertion, and pore formation of nisin Z. Increasing amounts of anionic lipids in both model and natural membranes were found to strongly enhance the interaction of nisin Z with the membranes at all stages. The results reveal a good correlation between the anionic lipid dependency of the three stages of interaction, of which the increased binding is probably the major determinant for antimicrobial activity. Maximal nisin Z activity could be observed for negatively charged lipid concentrations exceeding 50-60%, both in model membrane systems as well as in bacterial membrane systems. We propose that the amount of negatively charged lipids of the bacterial target membrane is a major determinant for the sensitivity of the organism for nisin. Nisin Z induced leakage of the anionic carboxyfluorescein was more efficient as compared to the leakage of the potassium cation. This lead to the conclusion that an anion-selective pore is formed. In contrast to the results obtained for nisin Z, the binding of [Glu-32]-nisin Z to vesicles remained low even in the presence of high amounts of negatively charged lipids. The insertion and pore-forming ability of [Glu-32]-nisin Z were also decreased. These results demonstrate that the C-terminus of nisin is responsible for the initial interaction of nisin, i.e., binding to the target membrane.

    Pore Formation by Nisin Involves Translocation of Its C-Terminal Part across the Membrane

    Get PDF
    Nisin is an amphiphilic peptide with a strong antimicrobial activity against various Gram-positive bacteria. Its activity results from permeabilization of bacterial membranes, causing efflux of cytoplasmic compounds. To get information on the molecular mechanism of membrane permeabilization, a mutant of nisin Z containing the C-terminal extension Asp-(His)6 was produced. The biological and anionic lipid-dependent membrane activity of this peptide was very similar to that of nisin Z. Analysis of the pH dependence of model membrane interactions with the elongated peptide indicated the importance of electrostatic interactions of the C-terminus with the target membrane for membrane permeabilization. Most importantly, the membrane topology of the C-terminus of the molecule could be determined by trypsin digestion experiments, in which trypsin was encapsulated in the lumen of large unilamellar vesicles. The results show that the C-terminal part of the peptide translocates across model membranes. The pH and anionic lipid dependence of translocation closely paralleled the results of membrane permeabilization studies. Binding of nickel ions to the histidines blocked translocation of the C-terminus and concomitantly resulted in a 4-fold reduced capacity to induce K+ leakage. The results demonstrate for the first time that pore formation of nisin involves translocation of the C-terminal region of the molecule across the membrane.

    The Orientation of Nisin in Membranes

    Get PDF
    Nisin is a 34 residue long peptide belonging to the group A lantibiotics with antimicrobial activity against Gram-positive bacteria. The antimicrobial activity is based on pore formation in the cytoplasmic membrane of target organisms. The mechanism which leads to pore formation remains to be clarified. We studied the orientation of nisin via site-directed tryptophan fluorescence spectroscopy. Therefore, we engineered three nisin Z variants with unique tryptophan residues at positions 1, 17, and 32, respectively. The activity of the tryptophan mutants against Gram-positive bacteria and in model membrane systems composed of DOPC or DOPG was established to be similar to that of wild type nisin Z. The tryptophan fluorescence emission maximum showed an increasing blue-shift upon interaction with vesicles containing increased amounts of DOPG, with the largest effect for the 1W peptide. Studies with the aqueous quencher acrylamide showed that all tryptophans became inaccessible from the aqueous phase in the presence of negatively charged lipids in the vesicles. From these results it is concluded that anionic lipids mediate insertion of the tryptophan residues in at least three positions of the molecule into the lipid bilayer. The depth of insertion of the tryptophan residues was determined via quenching of the tryptophan fluorescence by spin-labeled lipids. The results showed that the depth of insertion was dependent on the amount of negatively charged lipids. In membranes containing 50% DOPG, the distances from the bilayer center were determined to be 15.7, 15.0, and 18.4 Ã… for the tryptophan at position 1, 17, and 32, respectively. In membranes containing 90% DOPG, these distances were calculated to be 10.8, 11.5, and 13.1 Ã…, respectively. These results suggest an overall parallel average orientation of nisin in the membrane, with respect to the membrane surface, with the N-terminus more deeply inserted than the C-terminus. These data were used to model the orientation of nisin in the membrane
    corecore