23 research outputs found

    Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes

    Get PDF
    AbstractLeader peptidase is an integral membrane protein of E. coli and it catalyses the removal of most signal peptides from translocated precursor proteins. In this study it is shown that when the transmembrane anchors are removed in vivo, the remaining catalytic domain can bind to inner and outer membranes of E. coli. Furthermore, the purified catalytic domain binds to inner membrane vesicles and vesicles composed of purified inner membrane lipids with comparable efficiency. It is shown that the interaction is caused by penetration of a part of the catalytic domain between the lipids. Penetration is mediated by phosphatidylethanolamine, the most abundant lipid in E. coli, and does not seem to depend on electrostatic interactions. A hydrophobic segment around the catalytically important residue serine 90 is required for the interaction with membranes

    Aerobic sn-glycerol-3-phosphate dehydrogenase from Escherichia coli binds to the cytoplasmic membrane through an amphipathic alpha-helix.

    No full text
    sn-Glycerol-3-phosphate dehydrogenase (GlpD) from Escherichia coli is a peripheral membrane enzyme involved in respiratory electron transfer. For it to display its enzymic activity, binding to the inner membrane is required. The way the enzyme interacts with the membrane and how this controls activity has not been elucidated. In the present study we provide evidence for direct protein-lipid interaction. Using the monolayer technique, we observed insertion of GlpD into lipid monolayers with a clear preference for anionic phospholipids. GlpD variants with point mutations in their predicted amphipathic helices showed a decreased ability to penetrate anionic phospholipid monolayers. From these data we propose that membrane binding of GlpD occurs by insertion of an amphipathic helix into the acyl-chain region of lipids mediated by negatively charged phospholipids

    Functional Reconstitution of Membrane Proteins in Monolayer Liposomes from Bipolar Lipids of Sulfolobus acidocaldarius

    No full text
    Membranes of Sulfolobus acidocaldarius, an extreme thermophilic archaebacterium, are composed of unusual bipolar lipids. They consist of macrocyclic tetraethers with two polar heads linked by two hydrophobic C40 phytanyl chains which are thought to be arranged as a monolayer in the cytoplasmic membrane. Fractionation of a total lipid-extract from S. acidocaldarius yielded a lipid fraction which forms closed and stable unilamellar liposomes in aqueous media. Beef heart cytochrome c-oxidase could be functionally reconstituted in these liposomes. In the presence of reduced cytochrome c, a protonmotive force (Δp) across the liposomal membrane was generated of up to -92 mV. Upon fusion of these proteoliposomes with membrane vesicles of Lactococcus lactis, the Δp generated by cytochrome c-oxidase activity was capable to drive uphill transport of leucine. Electron microscopic analysis indicated that the tetraether lipids form a single monolayer liposome. The results demonstrate that tetraether lipids of archaebacteria can form a suitable matrix for the function of exogenous membrane proteins originating from a regular lipid bilayer.

    The C-Terminal Region of Nisin Is Responsible for the Initial Interaction of Nisin with the Target Membrane

    Get PDF
    The interaction of nisin Z and a nisin Z mutant carrying a negative charge in the C-terminus ([Glu-32]-nisin Z) with anionic lipids was characterized in model membrane systems, and bacterial membrane systems. We focused on three possible steps in the mode of action of nisin, i.e., binding, insertion, and pore formation of nisin Z. Increasing amounts of anionic lipids in both model and natural membranes were found to strongly enhance the interaction of nisin Z with the membranes at all stages. The results reveal a good correlation between the anionic lipid dependency of the three stages of interaction, of which the increased binding is probably the major determinant for antimicrobial activity. Maximal nisin Z activity could be observed for negatively charged lipid concentrations exceeding 50-60%, both in model membrane systems as well as in bacterial membrane systems. We propose that the amount of negatively charged lipids of the bacterial target membrane is a major determinant for the sensitivity of the organism for nisin. Nisin Z induced leakage of the anionic carboxyfluorescein was more efficient as compared to the leakage of the potassium cation. This lead to the conclusion that an anion-selective pore is formed. In contrast to the results obtained for nisin Z, the binding of [Glu-32]-nisin Z to vesicles remained low even in the presence of high amounts of negatively charged lipids. The insertion and pore-forming ability of [Glu-32]-nisin Z were also decreased. These results demonstrate that the C-terminus of nisin is responsible for the initial interaction of nisin, i.e., binding to the target membrane.
    corecore