175 research outputs found

    Laplacian Dynamics and Multiscale Modular Structure in Networks

    Full text link
    Most methods proposed to uncover communities in complex networks rely on their structural properties. Here we introduce the stability of a network partition, a measure of its quality defined in terms of the statistical properties of a dynamical process taking place on the graph. The time-scale of the process acts as an intrinsic parameter that uncovers community structures at different resolutions. The stability extends and unifies standard notions for community detection: modularity and spectral partitioning can be seen as limiting cases of our dynamic measure. Similarly, recently proposed multi-resolution methods correspond to linearisations of the stability at short times. The connection between community detection and Laplacian dynamics enables us to establish dynamically motivated stability measures linked to distinct null models. We apply our method to find multi-scale partitions for different networks and show that the stability can be computed efficiently for large networks with extended versions of current algorithms.Comment: New discussions on the selection of the most significant scales and the generalisation of stability to directed network

    Detecting communities using asymptotical Surprise

    Full text link
    Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity, and may find communities where modularity fails to discern any structure

    Trace Complexity of Chaotic Reversible Cellular Automata

    Full text link
    Delvenne, K\r{u}rka and Blondel have defined new notions of computational complexity for arbitrary symbolic systems, and shown examples of effective systems that are computationally universal in this sense. The notion is defined in terms of the trace function of the system, and aims to capture its dynamics. We present a Devaney-chaotic reversible cellular automaton that is universal in their sense, answering a question that they explicitly left open. We also discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible Computation 2014 (proceedings published by Springer

    Stability of graph communities across time scales

    Get PDF
    The complexity of biological, social and engineering networks makes it desirable to find natural partitions into communities that can act as simplified descriptions and provide insight into the structure and function of the overall system. Although community detection methods abound, there is a lack of consensus on how to quantify and rank the quality of partitions. We show here that the quality of a partition can be measured in terms of its stability, defined in terms of the clustered autocovariance of a Markov process taking place on the graph. Because the stability has an intrinsic dependence on time scales of the graph, it allows us to compare and rank partitions at each time and also to establish the time spans over which partitions are optimal. Hence the Markov time acts effectively as an intrinsic resolution parameter that establishes a hierarchy of increasingly coarser clusterings. Within our framework we can then provide a unifying view of several standard partitioning measures: modularity and normalized cut size can be interpreted as one-step time measures, whereas Fiedler's spectral clustering emerges at long times. We apply our method to characterize the relevance and persistence of partitions over time for constructive and real networks, including hierarchical graphs and social networks. We also obtain reduced descriptions for atomic level protein structures over different time scales.Comment: submitted; updated bibliography from v

    Laplacian Dynamics and Multiscale Modular Structure in Networks

    Get PDF
    Most methods proposed to uncover communities in complex networks rely on their structural properties. Here we introduce the stability of a network partition, a measure of its quality defined in terms of the statistical properties of a dynamical process taking place on the graph. The time-scale of the process acts as an intrinsic parameter that uncovers community structures at different resolutions. The stability extends and unifies standard notions for community detection: modularity and spectral partitioning can be seen as limiting cases of our dynamic measure. Similarly, recently proposed multi-resolution methods correspond to linearisations of the stability at short times. The connection between community detection and Laplacian dynamics enables us to establish dynamically motivated stability measures linked to distinct null models. We apply our method to find multi-scale partitions for different networks and show that the stability can be computed efficiently for large networks with extended versions of current algorithms.Comment: New discussions on the selection of the most significant scales and the generalisation of stability to directed network

    Encoding dynamics for multiscale community detection: Markov time sweeping for the Map equation

    Get PDF
    The detection of community structure in networks is intimately related to finding a concise description of the network in terms of its modules. This notion has been recently exploited by the Map equation formalism (M. Rosvall and C.T. Bergstrom, PNAS, 105(4), pp.1118--1123, 2008) through an information-theoretic description of the process of coding inter- and intra-community transitions of a random walker in the network at stationarity. However, a thorough study of the relationship between the full Markov dynamics and the coding mechanism is still lacking. We show here that the original Map coding scheme, which is both block-averaged and one-step, neglects the internal structure of the communities and introduces an upper scale, the `field-of-view' limit, in the communities it can detect. As a consequence, Map is well tuned to detect clique-like communities but can lead to undesirable overpartitioning when communities are far from clique-like. We show that a signature of this behavior is a large compression gap: the Map description length is far from its ideal limit. To address this issue, we propose a simple dynamic approach that introduces time explicitly into the Map coding through the analysis of the weighted adjacency matrix of the time-dependent multistep transition matrix of the Markov process. The resulting Markov time sweeping induces a dynamical zooming across scales that can reveal (potentially multiscale) community structure above the field-of-view limit, with the relevant partitions indicated by a small compression gap.Comment: 10 pages, 6 figure

    Flow graphs: interweaving dynamics and structure

    Get PDF
    The behavior of complex systems is determined not only by the topological organization of their interconnections but also by the dynamical processes taking place among their constituents. A faithful modeling of the dynamics is essential because different dynamical processes may be affected very differently by network topology. A full characterization of such systems thus requires a formalization that encompasses both aspects simultaneously, rather than relying only on the topological adjacency matrix. To achieve this, we introduce the concept of flow graphs, namely weighted networks where dynamical flows are embedded into the link weights. Flow graphs provide an integrated representation of the structure and dynamics of the system, which can then be analyzed with standard tools from network theory. Conversely, a structural network feature of our choice can also be used as the basis for the construction of a flow graph that will then encompass a dynamics biased by such a feature. We illustrate the ideas by focusing on the mathematical properties of generic linear processes on complex networks that can be represented as biased random walks and also explore their dual consensus dynamics.Comment: 4 pages, 1 figur

    Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin-myosin light chain interaction

    Full text link
    Despite the recognized importance of the multi-scale spatio-temporal organization of proteins, most computational tools can only access a limited spectrum of time and spatial scales, thereby ignoring the effects on protein behavior of the intricate coupling between the different scales. Starting from a physico-chemical atomistic network of interactions that encodes the structure of the protein, we introduce a methodology based on multi-scale graph partitioning that can uncover partitions and levels of organization of proteins that span the whole range of scales, revealing biological features occurring at different levels of organization and tracking their effect across scales. Additionally, we introduce a measure of robustness to quantify the relevance of the partitions through the generation of biochemically-motivated surrogate random graph models. We apply the method to four distinct conformations of myosin tail interacting protein, a protein from the molecular motor of the malaria parasite, and study properties that have been experimentally addressed such as the closing mechanism, the presence of conserved clusters, and the identification through computational mutational analysis of key residues for binding.Comment: 13 pages, 7 Postscript figure

    Modularity in signaling systems

    Get PDF
    Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control system theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems being constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications

    A complexity analysis of Policy Iteration through combinatorial matrices arising from Unique Sink Orientations

    Get PDF
    Unique Sink Orientations (USOs) are an appealing abstraction of several major optimization problems of applied mathematics such as Linear Programming (LP), Markov Decision Processes (MDPs) or 2-player Turn Based Stochastic Games (2TBSGs). A polynomial time algorithm to find the sink of a USO would translate into a strongly polynomial time algorithm to solve the aforementioned problems—a major quest for all three cases. In the case of an acyclic USO of a cube, a situation that captures both MDPs and 2TBSGs, one can apply the well-known Policy Iteration (PI) algorithm. The study of its complexity is the object of this work. Despite its exponential worst case complexity, the principle of PI is a powerful source of inspiration for other methods. In 2012, Hansen and Zwick introduced a new combinatorial relaxation of the complexity problem for PI resulting in what we call Order-Regular (OR) matrices. They conjectured that the maximum number of rows of such matrices—an upper bound on the number of steps of PI—should follow the Fibonacci sequence. As our first contribution, we disprove the lower bound part of Hansen and Zwick's conjecture. Then, for our second contribution, we (exponentially) improve the Ω(1.4142n) lower bound on the number of steps of PI from Schurr and Szabó in the case of OR matrices and obtain an Ω(1.4269n) bound. © 2017 Elsevier B.V
    • …
    corecore