216 research outputs found
The future of AD clinical trials with the advent of anti-amyloid therapies: An CTAD Task Force report
BACKGROUND: Aducanumab (ADUHELMTM) was approved for the treatment of Alzheimer\u27s disease (AD) in the US. This approval was supported by an effect on the cerebral amyloid plaque load and evidence of cognitive efficacy to be confirmed in post-marketing trials. Other anti-amyloid antibodies are under investigation in phase III (donanemab, lecanemab, gantenerumab) and have shown preliminary evidence of a cognitive benefit in phase II trials. Although these agents target a small segment of patients with mild cognitive impairment due to AD or mild AD dementia, their advent will change the design of future clinical trials both for anti-amyloid and non-amyloid drugs. These changes will promote the selection of patients in clinical trials by amyloid and tau biomarkers that identify patients with appropriate biology and may follow the treatment response to approved amyloid antibodies. The use of these agents creates the opportunity to test combined drug therapies and to conduct comparative assessments with innovative therapies and newly approved drugs available in clinical practice. Blood-based AD biomarkers should be implemented in research and could facilitate the recruitment into clinical trials. Anti-amyloid antibodies will have positive (e.g., more early diagnosis) and negative impacts (some subjects will be reluctant to participate in trials and risk assignment to placebo) on AD trials in the immediate future. We present the results of the CTAD Task Force on this topic, in Boston, November 6, 2021
Thermodynamics and magnetic field profiles in low-kappa type-II superconductors
Two-dimensional low-kappa type-II superconductors are studied numerically
within the Eilenberger equations of superconductivity. Depending on the
Ginzburg-Landau parameter \kappa=\lambda/\xi vortex-vortex interaction can be
attractive or purely repulsive. The sign of interaction is manifested as a
first (second) order phase transition from Meissner to the mixed state.
Temperature and field dependence of the magnetic field distribution in
low-kappa type-II superconductors with attractive intervortex interaction is
calculated. Theoretical results are compared to the experiment.Comment: 4 pages, 3 figure
Domain walls at the spin density wave endpoint of the organic superconductor (TMTSF)2PF6 under pressure
We report the first comprehensive investigation of the organic superconductor
(TMTSF)2PF6 in the vicinity of the endpoint of the spin density wave - metal
phase transition where phase coexistence occurs. At low temperature, the
transition of metallic domains towards superconductivity is used to reveal the
various textures. In particular, we demonstrate experimentally the existence of
1D and 2D metallic domains with a cross-over from a filamentary
superconductivity mostly along the c?-axis to a 2D superconductivity in the
b?c-plane perpendicular to the most conducting direction. The formation of
these domain walls may be related to the proposal of a soliton phase in the
vicinity of the critical pressure of the (TMTSF)2PF6 phase diagram.Comment: 5 page
Spin-density wave versus superconducting fluctuations for quasi-one-dimensional electrons in two chains of Tomonaga-Luttinger liquids
We study possible states at low temperatures by applying the
renormalization-group method to two chains of Tomonaga-Luttinger liquids with
both repulsive intrachain interactions and interchain hopping. As the energy
decreases below the hopping energy, three distinct regions I, III, and II
appear successively depending on properties of fluctuations. The crossover from
the spin-density wave (SDW) state to superconducting (SC) state takes place in
region III where there are the excitation gaps of transverse charge and spin
fluctuations. The competition between SDW and SC states in region III is
crucial to understanding the phase diagram in the quasi-one-dimensional organic
conductors.Comment: 11 pages, Revtex format, 1 figure, to be published in Phys. Rev.
Spin-triplet superconductivity in quasi-one dimension
We consider a system with electron-phonon interaction, antiferromagnetic
fluctuations and disconnected open Fermi surfaces. The existence of odd-parity
superconductivity in this circumstance is shown for the first time. If it is
applied to the quasi-one-dimensional systems like the organic conductors
(TMTSF)_2X we obtain spin-triplet superconductivity with nodeless gap. Our
result is also valid in higher dimensions(2d and 3d).Comment: 2 page
Role of Phase Variables in Quarter-Filled Spin Density Wave States
Several kinds of spin density wave (SDW) states with both quarter-filled band
and dimerization are reexamined for a one-dimensional system with on-site,
nearest-neighbor and next-nearest-neighbor repulsive interactions, which has
been investigated by Kobayashi et al. (J. Phys. Soc. Jpn. 67 (1998) 1098).
Within the mean-field theory, the ground state and the response to the density
variation are calculated in terms of phase variables, and ,
where expresses the charge fluctuation of SDW and describes the
relative motion between density wave with up spin and that with down spin
respectively. It is shown that the exotic state of coexistence of 2k_F-SDW and
2k_F-charge density wave (CDW) is followed by 4k_F-SDW but not by 4k_F-CDW
where k_F denotes a Fermi wave vector. The harmonic potential with respect to
the variation of and/or disappears for the interactions, which
lead to the boundary between the pure 2k_F-SDW state and the corresponding
coexistent state.Comment: 9 pages, 15 figures, to be published in J. Phys. Soc. Jpn. 69 No.3
(2000) 79
Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic Conductors
The magnetic structure of antiferromagnetically ordered phases of
quasi-one-dimensional organic conductors is studied theoretically at absolute
zero based on the mean field approximation to the quarter-filled band with
on-site and nearest-neighbor Coulomb interaction. The differences in magnetic
properties between the antiferromagnetic phase of (TMTTF)X and the spin
density wave phase in (TMTSF)X are seen to be due to a varying degrees of
roles played by the on-site Coulomb interaction. The nearest-neighbor Coulomb
interaction introduces charge disproportionation, which has the same spatial
periodicity as the Wigner crystal, accompanied by a modified antiferromagnetic
phase. This is in accordance with the results of experiments on (TMTTF)Br
and (TMTTF)SCN. Moreover, the antiferromagnetic phase of (DI-DCNQI)Ag
is predicted to have a similar antiferromagnetic spin structure.Comment: 8 pages, LaTeX, 4 figures, uses jpsj.sty, to be published in J. Phys.
Soc. Jpn. 66 No. 5 (1997
Coexistent State of Charge Density Wave and Spin Density Wave in One-Dimensional Quarter Filled Band Systems under Magnetic Fields
We theoretically study how the coexistent state of the charge density wave
and the spin density wave in the one-dimensional quarter filled band is
enhanced by magnetic fields. We found that when the correlation between
electrons is strong the spin density wave state is suppressed under high
magnetic fields, whereas the charge density wave state still remains. This will
be observed in experiments such as the X-ray measurement.Comment: 7 pages, 15 figure
Magnetization plateau in a two-dimensional multiple-spin exchange model
We study a multiple-spin exchange model on a triangular lattice, which is a
possible model for low-density solid 3He films. Due to strong competitions
between ferromagnetic three-spin exchange and antiferromagnetic four-spin one,
the ground states are highly degenerate in the classical limit. At least
2^{L/2}-fold degeneracy exists on the L*L triangular lattice except for the
SO(3) symmetry. In the magnetization process, we found a plateau at
m/m_{sat}=1/2, in which the ground state is "uuud state" (a collinear state
with four sublattices). The 1/2-plateau appears due to the strong four-spin
exchange interaction. This plateau survives against both quantum and thermal
fluctuations. Under a magnetic field which realizes the "uuud" ordered state, a
phase transition occurs at a finite temperature. We predict that low-density
solid 3He thin films may show the 1/2-plateau in the magnetization process.
Experimental observation of the plateau will verify strength of the four-spin
exchange. It is also discussed that this magnetization plateau can be
understood as an insulating-conducting transition in a particle picture.Comment: 10 pages, RevTeX, 12 figures, added a reference and corrected typos,
to be published in Phys.Rev.B (01 APR 99
Possible Triplet Electron Pairing and an Anisotropic Spin Susceptibility in Organic Superconductors (TMTSF)_2 X
We argue that (TMTSF)_2 PF_6 compound under pressure is likely a triplet
superconductor with a vector order parameter d(k) \equiv (d_a(k) \neq 0, d_c(k)
= ?, d_{b'}(k) = 0); |d_a(k)| > |d_c(k)|. It corresponds to an anisotropic spin
susceptibility at T=0: \chi_{b'} = \chi_0, \chi_a \ll \chi_0, where \chi_0 is
its value in a metallic phase. [The spin quantization axis, z, is parallel to a
so-called b'-axis]. We show that the suggested order parameter explains why the
upper critical field along the b'-axis exceeds all paramagnetic limiting
fields, including that for a nonuniform superconducting state, whereas the
upper critical field along the a-axis (a \perp b') is limited by the Pauli
paramagnetic effects [I. J. Lee, M. J. Naughton, G. M. Danner and P. M.
Chaikin, Phys. Rev. Lett. 78, 3555 (1997)]. The triplet order parameter is in
agreement with the recent Knight shift measurements by I. J. Lee et al. as well
as with the early results on a destruction of superconductivity by nonmagnetic
impurities and on the absence of the Hebel-Slichter peak in the NMR relaxation
rate.Comment: 4 pages, 1 eps figur
- …