425 research outputs found
Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion
We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa
Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health
Weightlessness causes a cephalad fluid shift and reduction in mechanical stimulation, adversely affecting both cortical and trabecular bone tissue in astronauts. In rodent models of weightlessness, the onset of bone loss correlates with reduced skeletal perfusion, reduced and rarified vasculature and lessened vasodilation, which resembles blood-bone symbiotic events that can occur with fracture repair and aging. These are especially serious risks for long term, exploration class missions when astronauts will face the challenge of increased exposure to space radiation and abrupt transitions between different gravity environments upon arrival and return. Previously, we found using the mouse hindlimb unloading model and exposure to heavy ion radiation, both disuse and irradiation cause an acute bone loss that was associated with a reduced capacity to produce bone-forming osteoblasts from the bone marrow. Together, these findings led us to hypothesize that exposure to space radiation exacerbates weightlessness-induced bone loss and impairs recovery upon return, and that treatment with anti-oxidants may mitigate these effects. The specific aims of this recently awarded grant are to: AIM 1 Determine the functional and structural consequences of prolonged weightlessness and space radiation (simulated spaceflight) for bone and skeletal vasculature in the context of bone cell function and oxidative stress. AIM 2 Determine the extent to which an anti-oxidant protects against weightlessness and space radiation-induced bone loss and vascular dysfunction. AIM 3 Determine how space radiation influences later skeletal and vasculature recovery from prolonged weightlessness and the potential of anti-oxidants to preserve adaptive remodeling
Muscle Fatigue Analysis Using OpenSim
In this research, attempts are made to conduct concrete muscle fatigue
analysis of arbitrary motions on OpenSim, a digital human modeling platform. A
plug-in is written on the base of a muscle fatigue model, which makes it
possible to calculate the decline of force-output capability of each muscle
along time. The plug-in is tested on a three-dimensional, 29 degree-of-freedom
human model. Motion data is obtained by motion capturing during an arbitrary
running at a speed of 3.96 m/s. Ten muscles are selected for concrete analysis.
As a result, the force-output capability of these muscles reduced to 60%-70%
after 10 minutes' running, on a general basis. Erector spinae, which loses
39.2% of its maximal capability, is found to be more fatigue-exposed than the
others. The influence of subject attributes (fatigability) is evaluated and
discussed
Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping
Experiments have shown that elastic ankle exoskeletons can be used to reduce ankle joint and plantar-flexor muscle loading when hopping in place and, in turn, reduce metabolic energy consumption. However, recent experimental work has shown that such exoskeletons cause less favourable soleus (SO) muscle–tendon mechanics than is observed during normal hopping, which might limit the capacity of the exoskeleton to reduce energy consumption. To directly link plantar-flexor mechanics and energy consumption when hopping in exoskeletons, we used a musculoskeletal model of the human leg and a model of muscle energetics in simulations of muscle–tendon dynamics during hopping with and without elastic ankle exoskeletons. Simulations were driven by experimental electromyograms, joint kinematics and exoskeleton torque taken from previously published data. The data were from seven males who hopped at 2.5 Hz with and without elastic ankle exoskeletons. The energetics model showed that the total rate of metabolic energy consumption by ankle muscles was not significantly reduced by an ankle exoskeleton. This was despite large reductions in plantar-flexor force production (40–50%). The lack of larger metabolic reductions with exoskeletons was attributed to increases in plantar-flexor muscle fibre velocities and a shift to less favourable muscle fibre lengths during active force production. This limited the capacity for plantar-flexors to reduce activation and energy consumption when hopping with exoskeleton assistance
Oxidative Stress Responses to Simulated Spaceflight in Mineralized and Marrow Compartments of Bone and Associated Vasculature
Long-term spaceflight causes profound changes to the musculoskeletal system attributable to unloading and fluid shifts in microgravity. Future space explorations beyond the earths magnetosphere will expose astronauts to space radiation, which may cause additional skeletal deficits that are not yet fully understood. Our long-term goals are twofold: to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures if necessary. Our central hypothesis is that oxidative stress plays a key role in progressive bone loss and vascular dysfunction caused by spaceflight. In animals models, overproduction of free radicals is associated with increased bone resorption, lower bone formation, and decrements in bone mineral density and structure which can ultimately lead to skeletal fragility. Evidence in support of a possible causative role for oxidative stress in spaceflight-induced bone loss derive from knockout and transgenic mouse studies and the use of pharmacological interventions with known anti-oxidant properties. In our studies to simulate spaceflight, 16-wk old, male C56Bl/6J mice were assigned to one of four groups: hind limb unloading to simulate weightlessness (HU), normally loaded Controls (NL) (sham irradiated, no hind limb unloading), irradiated at NASA Space Radiation Laboratory IR with 1-2Gy of (600MeV/n) alone, or in combination with protons (0.5Gy Protons/0.5Gy 56Fe), (IR) or both hind limb unloaded and irradiated, HU+IR. Mice were exposed to radiation 3 days after initiating HU and tissues harvested were 1-14 days after initiating treatments for analyses. Results from our laboratories, which employ various biochemical, gene expression, functional, and transgenic animal model methods, implicate dynamic regulation of redox-related pathways by spaceflight-related environmental factors. As one example, we found that combined HU and radiation exposure caused oxidative damage in skeletal tissues (lipid peroxidation) of wildtype mice, whereas bone from transgenic mice that overexpress human catalase in mitochondria were protected. Interestingly, marrow cells grown under culture conditions that select for endothelial progenitor cells (EPC), showed that HU but not IR reduced EPC cell migration; in contrast HU and IR each inhibited growth of marrow-derived osteoblast progenitors. Taken together, these results indicate that unloading and ionizing elicit distinct effects on progenitor and mature cells of vascular and skeletal tissue, and that oxidative damage may contribute to skeletal and vascular deficits that may emerge during extended space travel
Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing
This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy
Novel Technologies for Assessing Dietary Intake: Evaluating the Usability of a Mobile Telephone Food Record Among Adults and Adolescents
The development of a mobile telephone food record has the potential to ameliorate much of the burden associated with current methods of dietary assessment. When using the mobile telephone food record, respondents capture an image of their foods and beverages before and after eating. Methods of image analysis and volume estimation allow for automatic identification and volume estimation of foods. To obtain a suitable image, all foods and beverages and a fiducial marker must be included in the image
Migration and "Low-Skilled" Workers in Destination Countries
In the fourth article in a six-part PLoS Medicine series on Migration & Health, Joan Benach and colleagues discuss the specific health risks and policy needs associated with migration in destination countries, especially for low-skilled and illegal migrant workers
- …