2 research outputs found

    The non-equilibrium phase transition of the pair-contact process with diffusion

    Full text link
    The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behaviour can be characterized and to what extent the diffusive pair-contact process represents an independent universality class. Recent research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde

    Applications of Field-Theoretic Renormalization Group Methods to Reaction-Diffusion Problems

    Full text link
    We review the application of field-theoretic renormalization group (RG) methods to the study of fluctuations in reaction-diffusion problems. We first investigate the physical origin of universality in these systems, before comparing RG methods to other available analytic techniques, including exact solutions and Smoluchowski-type approximations. Starting from the microscopic reaction-diffusion master equation, we then pedagogically detail the mapping to a field theory for the single-species reaction k A -> l A (l < k). We employ this particularly simple but non-trivial system to introduce the field-theoretic RG tools, including the diagrammatic perturbation expansion, renormalization, and Callan-Symanzik RG flow equation. We demonstrate how these techniques permit the calculation of universal quantities such as density decay exponents and amplitudes via perturbative eps = d_c - d expansions with respect to the upper critical dimension d_c. With these basics established, we then provide an overview of more sophisticated applications to multiple species reactions, disorder effects, L'evy flights, persistence problems, and the influence of spatial boundaries. We also analyze field-theoretic approaches to nonequilibrium phase transitions separating active from absorbing states. We focus particularly on the generic directed percolation universality class, as well as on the most prominent exception to this class: even-offspring branching and annihilating random walks. Finally, we summarize the state of the field and present our perspective on outstanding problems for the future.Comment: 10 figures include
    corecore