1 research outputs found

    Variational Principle for Mixed Classical-Quantum Systems

    Full text link
    An extended variational principle providing the equations of motion for a system consisting of interacting classical, quasiclassical and quantum components is presented, and applied to the model of bilinear coupling. The relevant dynamical variables are expressed in the form of a quantum state vector which includes the action of the classical subsystem in its phase factor. It is shown that the statistical ensemble of Brownian state vectors for a quantum particle in a classical thermal environment can be described by a density matrix evolving according to a nonlinear quantum Fokker-Planck equation. Exact solutions of this equation are obtained for a two-level system in the limit of high temperatures, considering both stationary and nonstationary initial states. A treatment of the common time shared by the quantum system and its classical environment, as a collective variable rather than as a parameter, is presented in the Appendix.Comment: 16 pages, LaTex; added Figure 2 and Figure
    corecore