9 research outputs found

    Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications

    Get PDF
    Evren H Gokce1, Emrah Korkmaz1, Eleonora Dellera2, Giuseppina Sandri2, M Cristina Bonferoni2, Ozgen Ozer11Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ege, Izmir, Turkey; 2Department of Drug Sciences, University of Pavia, Pavia, ItalyBackground: Excessive generation of radical oxygen species (ROS) is a contributor to skin pathologies. Resveratrol (RSV) is a potent antioxidant. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) can ensure close contact and increase the amount of drug absorbed into the skin. In this study, RSV was loaded into SLN and NLC for dermal applications.Methods: Nanoparticles were prepared by high shear homogenization using Compritol 888ATO, Myglyol, Poloxamer188, and Tween80. Particle size (PS), polydispersity index (PI), zeta potential (ZP), drug entrapment efficiency (EE), and production yield were determined. Differential scanning calorimetry (DSC) analysis and morphological transmission electron microscopy (TEM) examination were conducted. RSV concentration was optimized with cytotoxicity studies, and net intracellular accumulation of ROS was monitored with cytofluorimetry. The amount of RSV was determined from different layers of rat abdominal skin.Results: PS of uniform RSV-SLN and RSV-NLC were determined as 287.2 nm ± 5.1 and 110.5 nm ± 1.3, respectively. ZP was –15.3 mV ± 0.4 and –13.8 mV ± 0.1 in the same order. The drug EE was 18% higher in NLC systems. TEM studies showed that the drug in the shell model was relevant for SLN, and that the melting point of the lipid in NLC was slightly lower. Concentrations below 50 µM were determined as suitable RSV concentrations for both SLN and NLC in cell culture studies. RSV-NLC showed less fluorescence, indicating less ROS production in cytofluorometric studies. Ex vivo skin studies revealed that NLC are more efficient in carrying RSV to the epidermis.Conclusion: This study suggests that both of the lipid nanoparticles had antioxidant properties at a concentration of 50 µM. When the two systems were compared, NLC penetrated deeper into the skin. RSV-loaded NLC with smaller PS and higher drug loading appears to be superior to SLN for dermal applications.Keywords: solid lipid nanoparticles, nanostructured lipid carriers, resveratro

    Development and Characterization of an Orodispersible Film for Vitamin D3 Supplementation

    No full text
    Vitamin D plays a crucial and very well-known role in regulation of calcium homeostasis and bone metabolism and mineralization. However, a huge and more recent body of evidence supports the positive influence of vitamin D on the regulation of immune response, ranging from protection against respiratory tract infections to prevention and management of asthma. Nevertheless, vitamin D deficiency is a very common condition and there is an increasing need for suitable products for proper supplementation, allowing good compliance also in specific populations. Orally disintegrating tablets (ODT) were first developed to overcome the difficulty experienced by pediatric and geriatric patients of swallowing traditional oral dosage forms and, recently, orodispersible films (ODF) are gaining popularity as novel dosage form for assuming active pharmaceutical ingredients, vitamins, and ingredients for food supplements. This study describes a 2000 IU Vitamin D3 ODF for daily intake, consisting of hydrophilic polymers and suitable excipients, manufactured by film-casting process. Elongation-at-break (E%), Young’s modulus (Y), and tensile strength (TS) were investigated using a dynamometer. Chemical stability was evaluated assaying the vitamin D3 in the films stored at different environmental conditions. In addition, in vitro disintegration and dissolution studies were performed. Correlation existed between the mechanical properties of the film and the residual water, acting as plasticizer. The stability study showed that vitamin D3 assay was ≥90% also after 3 months at 40 °C. The film disintegrated in less than 1 min and the vitamin D3 released was ≥75% after 15 min. An ODF with suitable properties can be manufactured and used as innovative dosage form for vitamin D3 food supplements

    Association of alpha tocopherol and ag sulfadiazine chitosan oleate nanocarriers in bioactive dressings supporting platelet lysate application to skin wounds

    No full text
    Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds
    corecore